Exemplo n.º 1
0
 def __init__(self, level: LevelSelection, seed: int, frame_skip: int,
              human_control: bool, custom_reward_threshold: Union[int,
                                                                  float],
              visualization_parameters: VisualizationParameters, **kwargs):
     super().__init__(level, seed, frame_skip, human_control,
                      custom_reward_threshold, visualization_parameters,
                      **kwargs)
     self.state_space = StateSpace({
         "observation":
         VectorObservationSpace(shape=4)
         # "observation": PlanarMapsObservationSpace(shape=np.array([84, 84, 2]), low=0, high=1)
         # "observation": TensorObservationSpace(shape=np.array([2, 2]), low=0, high=1)
         # "player": VectorObservationSpace(shape=2),
         # "map": PlanarMapsObservationSpace(shape=np.array([84, 84, 1]), low=0, high=2),
     })
     self.goal_space = VectorObservationSpace(shape=4)
     # self.state_space = PlanarMapsObservationSpace(shape=np.array([84, 84, 2]), low=0, high=1)
     self.action_space = DiscreteActionSpace(num_actions=4,
                                             descriptions={
                                                 "0": "up",
                                                 "1": "down",
                                                 "2": "left",
                                                 "3": "right"
                                             })
     self.env = FacEnv()
     self.reward_limit = -np.power(
         np.sum(
             np.arange(1 + np.abs(self.env.target['x']) +
                       np.abs(self.env.target['y']))) / 2, 2)
def test_filter():
    filter = AttentionDiscretization(2)

    # passing an output space that is wrong
    with pytest.raises(ValueError):
        filter.validate_output_action_space(DiscreteActionSpace(10))
    with pytest.raises(ValueError):
        filter.validate_output_action_space(BoxActionSpace(10))

    # 1 dimensional box
    output_space = AttentionActionSpace(2, 0, 83)
    input_space = filter.get_unfiltered_action_space(output_space)

    assert np.all(filter.target_actions == np.array(
        [[[0., 0.], [41.5, 41.5]], [[0., 41.5], [41.5, 83.]],
         [[41.5, 0], [83., 41.5]], [[41.5, 41.5], [83., 83.]]]))
    assert input_space.actions == list(range(4))

    action = 2

    result = filter.filter(action)
    assert np.all(result == np.array([[41.5, 0], [83., 41.5]]))
    assert output_space.contains(result)

    # force int bins
    filter = AttentionDiscretization(2, force_int_bins=True)
    input_space = filter.get_unfiltered_action_space(output_space)

    assert np.all(filter.target_actions == np.array(
        [[[0., 0.], [41, 41]], [[0., 41], [41, 83.]], [[41, 0], [83., 41]],
         [[41, 41], [83., 83.]]]))
Exemplo n.º 3
0
def test_init():
    # discrete control
    action_space = DiscreteActionSpace(3)

    # OU process doesn't work for discrete controls
    with pytest.raises(ValueError):
        policy = OUProcess(action_space, mu=0, theta=0.1, sigma=0.2, dt=0.01)
 def get_unfiltered_action_space(
         self, output_action_space: ActionSpace) -> DiscreteActionSpace:
     self.output_action_space = output_action_space
     self.input_action_space = DiscreteActionSpace(
         len(self.target_actions),
         self.descriptions,
         filtered_action_space=output_action_space)
     return self.input_action_space
Exemplo n.º 5
0
def test_init():
    # discrete control
    action_space = DiscreteActionSpace(3)
    noise_schedule = LinearSchedule(1.0, 1.0, 1000)

    # additive noise requires a bounded range for the actions
    action_space = BoxActionSpace(np.array([10]))
    with pytest.raises(ValueError):
        policy = AdditiveNoise(action_space, noise_schedule, 0)
def test_get_action():
    # discrete control
    action_space = DiscreteActionSpace(3)
    policy = Greedy(action_space)

    best_action, _ = policy.get_action(np.array([10, 20, 30]))
    assert best_action == 2

    # continuous control
    action_space = BoxActionSpace(np.array([10]))
    policy = Greedy(action_space)

    best_action = policy.get_action(np.array([1, 1, 1]))
    assert np.all(best_action == np.array([1, 1, 1]))
Exemplo n.º 7
0
def test_filter():
    filter = BoxMasking(10, 20)

    # passing an output space that is wrong
    with pytest.raises(ValueError):
        filter.validate_output_action_space(DiscreteActionSpace(10))

    # 1 dimensional box
    output_space = BoxActionSpace(1, 5, 30)
    input_space = filter.get_unfiltered_action_space(output_space)

    action = np.array([2])
    result = filter.filter(action)
    assert result == np.array([12])
    assert output_space.contains(result)
def test_ppo_v_head():
    agent_parameters = ClippedPPOAgentParameters()
    action_space = DiscreteActionSpace(num_actions=5)
    spaces = SpacesDefinition(state=None,
                              goal=None,
                              action=action_space,
                              reward=None)
    value_net = VHead(agent_parameters=agent_parameters,
                      spaces=spaces,
                      network_name="test_v_head")
    value_net.initialize()
    batch_size = 15
    middleware_data = mx.nd.random.uniform(shape=(batch_size, 100))
    values = value_net(middleware_data)
    assert values.ndim == 1  # (batch_size)
    assert values.shape[0] == batch_size
def test_filter():
    filter = LinearBoxToBoxMap(10, 20)

    # passing an output space that is wrong
    with pytest.raises(ValueError):
        filter.validate_output_action_space(DiscreteActionSpace(10))

    # 1 dimensional box
    output_space = BoxActionSpace(1, 5, 35)
    input_space = filter.get_unfiltered_action_space(output_space)

    action = np.array([2])

    action = np.array([12])
    result = filter.filter(action)
    assert result == np.array([11])
    assert output_space.val_matches_space_definition(result)
def test_change_phase():
    # discrete control
    action_space = DiscreteActionSpace(3)
    epsilon_schedule = LinearSchedule(1.0, 0.1, 1000)
    policy = EGreedy(action_space, epsilon_schedule, evaluation_epsilon=0.01)

    # verify schedule not applying if not in training phase
    assert policy.get_control_param() == 1.0
    policy.change_phase(RunPhase.TEST)
    best_action = policy.get_action(np.array([10, 20, 30]))
    assert policy.epsilon_schedule.current_value == 1.0
    policy.change_phase(RunPhase.HEATUP)
    best_action = policy.get_action(np.array([10, 20, 30]))
    assert policy.epsilon_schedule.current_value == 1.0
    policy.change_phase(RunPhase.UNDEFINED)
    best_action = policy.get_action(np.array([10, 20, 30]))
    assert policy.epsilon_schedule.current_value == 1.0
def test_get_action():
    # discrete control
    action_space = DiscreteActionSpace(3)
    epsilon_schedule = LinearSchedule(1.0, 1.0, 1000)
    policy = EGreedy(action_space, epsilon_schedule, evaluation_epsilon=0)

    # verify that test phase gives greedy actions (evaluation_epsilon = 0)
    policy.change_phase(RunPhase.TEST)
    for i in range(100):
        best_action, _ = policy.get_action(np.array([10, 20, 30]))
        assert best_action == 2

    # verify that train phase gives uniform actions (exploration = 1)
    policy.change_phase(RunPhase.TRAIN)
    counters = np.array([0, 0, 0])
    for i in range(30000):
        best_action, _ = policy.get_action(np.array([10, 20, 30]))
        counters[best_action] += 1
    assert np.all(counters > 9500)  # this is noisy so we allow 5% error
def test_ppo_head():
    agent_parameters = ClippedPPOAgentParameters()
    num_actions = 5
    action_space = DiscreteActionSpace(num_actions=num_actions)
    spaces = SpacesDefinition(state=None,
                              goal=None,
                              action=action_space,
                              reward=None)
    head = PPOHead(agent_parameters=agent_parameters,
                   spaces=spaces,
                   network_name="test_ppo_head")

    head.initialize()

    batch_size = 15
    middleware_data = mx.nd.random.uniform(shape=(batch_size, 100))
    probs = head(middleware_data)
    assert probs.ndim == 2  # (batch_size, num_actions)
    assert probs.shape[0] == batch_size
    assert probs.shape[1] == num_actions
Exemplo n.º 13
0
 def __init__(self, level: LevelSelection, seed: int, frame_skip: int,
              human_control: bool, custom_reward_threshold: Union[int,
                                                                  float],
              visualization_parameters: VisualizationParameters, **kwargs):
     super().__init__(level, seed, frame_skip, human_control,
                      custom_reward_threshold, visualization_parameters,
                      **kwargs)
     self.state_space = StateSpace({
         "observation":
         PlanarMapsObservationSpace(np.array(
             [self.map_height, self.map_width,
              len(Channels)]),
                                    low=0,
                                    high=20)
     })
     self.init_env()
     self.action_space = DiscreteActionSpace(num_actions=21,
                                             descriptions={
                                                 "0": "up",
                                                 "1": "down",
                                                 "2": "left",
                                                 "3": "right",
                                                 "4": "up-left",
                                                 "5": "up-right",
                                                 "6": "down-left",
                                                 "7": "down-right",
                                                 "8": "mine-up",
                                                 "9": "mine-down",
                                                 "10": "mine-left",
                                                 "11": "mine-right",
                                                 "12": "belt-up",
                                                 "13": "belt-down",
                                                 "14": "belt-left",
                                                 "15": "belt-right",
                                                 "16": "inserter-up",
                                                 "17": "inserter-down",
                                                 "18": "inserter-left",
                                                 "19": "inserter-right",
                                                 "20": "chest"
                                             })
Exemplo n.º 14
0
def load_action_space(path_to_json):
    '''Loads the action space from a given json file, loads default action space
       is file upload fails.
       path_to_json - Absolute path to the json file containing the action space
    '''
    json_actions = None
    try:
        # Try loading the custom model metadata (may or may not be present)
        with open(path_to_json, 'r') as file:
            model_metadata = json.load(file)
            json_actions = model_metadata['action_space']
        LOGGER.info("Loaded action space from file: %s", json_actions)
    except Exception as ex:
        # Failed to load, fall back on the default action space
        from markov.defaults import model_metadata
        json_actions = model_metadata['action_space']
        LOGGER.info("Exception %s on loading custom action space, using default: %s", \
                    ex, json_actions)
    action_space = DiscreteActionSpace(num_actions=len(json_actions),
                                       default_action=next((i for i, v in enumerate(json_actions) \
                                                            if v['steering_angle'] == 0), None))
    return action_space, json_actions
Exemplo n.º 15
0
def train_on_csv_file(csv_file, n_epochs, dataset_size, obs_dim, act_dim):
    tf.reset_default_graph(
    )  # just to clean things up; only needed for the tutorial

    schedule_params = set_schedule_params(n_epochs, dataset_size)

    #########
    # Agent #
    #########
    # note that we have moved to BCQ, which will help the training to converge better and faster
    agent_params = set_agent_params(DDQNBCQAgentParameters)
    # additional setting for DDQNBCQAgentParameters agent parameters
    # can use either a kNN or a NN based model for predicting which actions not to max over in the bellman equation
    # agent_params.algorithm.action_drop_method_parameters = KNNParameters()
    agent_params.algorithm.action_drop_method_parameters = NNImitationModelParameters(
    )

    DATATSET_PATH = csv_file
    agent_params.memory.load_memory_from_file_path = CsvDataset(
        DATATSET_PATH, is_episodic=True)

    spaces = SpacesDefinition(state=StateSpace(
        {'observation': VectorObservationSpace(shape=obs_dim)}),
                              goal=None,
                              action=DiscreteActionSpace(act_dim),
                              reward=RewardSpace(1))

    graph_manager = BatchRLGraphManager(
        agent_params=agent_params,
        env_params=None,
        spaces_definition=spaces,
        schedule_params=schedule_params,
        vis_params=VisualizationParameters(
            dump_signals_to_csv_every_x_episodes=1),
        reward_model_num_epochs=30,
        train_to_eval_ratio=0.4)
    graph_manager.create_graph(task_parameters)
    graph_manager.improve()
    return
def test_get_control_param():
    # discrete control
    action_space = DiscreteActionSpace(3)
    epsilon_schedule = LinearSchedule(1.0, 0.1, 1000)
    policy = EGreedy(action_space, epsilon_schedule, evaluation_epsilon=0.01)

    # verify schedule applies to TRAIN phase
    policy.change_phase(RunPhase.TRAIN)
    for i in range(999):
        best_action = policy.get_action(np.array([10, 20, 30]))
        assert 1.0 > policy.get_control_param() > 0.1
    best_action = policy.get_action(np.array([10, 20, 30]))
    assert policy.get_control_param() == 0.1

    # test phases
    policy.change_phase(RunPhase.TEST)
    assert policy.get_control_param() == 0.01

    policy.change_phase(RunPhase.TRAIN)
    assert policy.get_control_param() == 0.1

    policy.change_phase(RunPhase.HEATUP)
    assert policy.get_control_param() == 0.1
def test_filter():
    filter = BoxDiscretization(9)

    # passing an output space that is wrong
    with pytest.raises(ValueError):
        filter.validate_output_action_space(DiscreteActionSpace(10))

    # 1 dimensional box
    output_space = BoxActionSpace(1, 5, 15)
    input_space = filter.get_unfiltered_action_space(output_space)

    assert filter.target_actions == [[5.], [6.25], [7.5], [8.75], [10.],
                                     [11.25], [12.5], [13.75], [15.]]
    assert input_space.actions == list(range(9))

    action = 2

    result = filter.filter(action)
    assert result == [7.5]
    assert output_space.contains(result)

    # 2 dimensional box
    filter = BoxDiscretization(3)
    output_space = BoxActionSpace(2, 5, 15)
    input_space = filter.get_unfiltered_action_space(output_space)

    assert filter.target_actions == [[5., 5.], [5., 10.], [5., 15.], [10., 5.],
                                     [10., 10.], [10., 15.], [15., 5.],
                                     [15., 10.], [15., 15.]]
    assert input_space.actions == list(range(9))

    action = 2

    result = filter.filter(action)
    assert result == [5., 15.]
    assert output_space.contains(result)
Exemplo n.º 18
0
    def __init__(self,
                 level: LevelSelection,
                 frame_skip: int,
                 visualization_parameters: VisualizationParameters,
                 target_success_rate: float = 1.0,
                 additional_simulator_parameters: Dict[str, Any] = {},
                 seed: Union[None, int] = None,
                 human_control: bool = False,
                 custom_reward_threshold: Union[int, float] = None,
                 random_initialization_steps: int = 1,
                 max_over_num_frames: int = 1,
                 observation_space_type: ObservationSpaceType = None,
                 **kwargs):
        """
        :param level: (str)
            A string representing the gym level to run. This can also be a LevelSelection object.
            For example, BreakoutDeterministic-v0

        :param frame_skip: (int)
            The number of frames to skip between any two actions given by the agent. The action will be repeated
            for all the skipped frames.

        :param visualization_parameters: (VisualizationParameters)
            The parameters used for visualizing the environment, such as the render flag, storing videos etc.

        :param additional_simulator_parameters: (Dict[str, Any])
            Any additional parameters that the user can pass to the Gym environment. These parameters should be
            accepted by the __init__ function of the implemented Gym environment.

        :param seed: (int)
            A seed to use for the random number generator when running the environment.

        :param human_control: (bool)
            A flag that allows controlling the environment using the keyboard keys.

        :param custom_reward_threshold: (float)
            Allows defining a custom reward that will be used to decide when the agent succeeded in passing the environment.
            If not set, this value will be taken from the Gym environment definition.

        :param random_initialization_steps: (int)
            The number of random steps that will be taken in the environment after each reset.
            This is a feature presented in the DQN paper, which improves the variability of the episodes the agent sees.

        :param max_over_num_frames: (int)
            This value will be used for merging multiple frames into a single frame by taking the maximum value for each
            of the pixels in the frame. This is particularly used in Atari games, where the frames flicker, and objects
            can be seen in one frame but disappear in the next.

        :param observation_space_type:
            This value will be used for generating observation space. Allows a custom space. Should be one of
            ObservationSpaceType. If not specified, observation space is inferred from the number of dimensions
            of the observation: 1D: Vector space, 3D: Image space if 1 or 3 channels, PlanarMaps space otherwise.
        """
        super().__init__(level, seed, frame_skip, human_control,
                         custom_reward_threshold, visualization_parameters,
                         target_success_rate)

        self.random_initialization_steps = random_initialization_steps
        self.max_over_num_frames = max_over_num_frames
        self.additional_simulator_parameters = additional_simulator_parameters

        # hide warnings
        gym.logger.set_level(40)
        """
        load and initialize environment
        environment ids can be defined in 3 ways:
        1. Native gym environments like BreakoutDeterministic-v0 for example
        2. Custom gym environments written and installed as python packages.
           This environments should have a python module with a class inheriting gym.Env, implementing the
           relevant functions (_reset, _step, _render) and defining the observation and action space
           For example: my_environment_package:MyEnvironmentClass will run an environment defined in the
           MyEnvironmentClass class
        3. Custom gym environments written as an independent module which is not installed.
           This environments should have a python module with a class inheriting gym.Env, implementing the
           relevant functions (_reset, _step, _render) and defining the observation and action space.
           For example: path_to_my_environment.sub_directory.my_module:MyEnvironmentClass will run an
           environment defined in the MyEnvironmentClass class which is located in the module in the relative path
           path_to_my_environment.sub_directory.my_module
        """
        if ':' in self.env_id:
            # custom environments
            if '/' in self.env_id or '.' in self.env_id:
                # environment in a an absolute path module written as a unix path or in a relative path module
                # written as a python import path
                env_class = short_dynamic_import(self.env_id)
            else:
                # environment in a python package
                env_class = gym.envs.registration.load(self.env_id)

            # instantiate the environment
            try:
                self.env = env_class(**self.additional_simulator_parameters)
            except:
                screen.error(
                    "Failed to instantiate Gym environment class %s with arguments %s"
                    % (env_class, self.additional_simulator_parameters),
                    crash=False)
                raise
        else:
            self.env = gym.make(self.env_id)

        # for classic control we want to use the native renderer because otherwise we will get 2 renderer windows
        environment_to_always_use_with_native_rendering = [
            'classic_control', 'mujoco', 'robotics'
        ]
        self.native_rendering = self.native_rendering or \
                                any([env in str(self.env.unwrapped.__class__)
                                     for env in environment_to_always_use_with_native_rendering])
        if self.native_rendering:
            if hasattr(self, 'renderer'):
                self.renderer.close()

        # seed
        if self.seed is not None:
            self.env.seed(self.seed)
            np.random.seed(self.seed)
            random.seed(self.seed)

        # frame skip and max between consecutive frames
        self.is_mujoco_env = 'mujoco' in str(self.env.unwrapped.__class__)
        self.is_roboschool_env = 'roboschool' in str(
            self.env.unwrapped.__class__)
        self.is_atari_env = 'Atari' in str(self.env.unwrapped.__class__)
        if self.is_atari_env:
            self.env.unwrapped.frameskip = 1  # this accesses the atari env that is wrapped with a timelimit wrapper env
            if self.env_id == "SpaceInvadersDeterministic-v4" and self.frame_skip == 4:
                screen.warning(
                    "Warning: The frame-skip for Space Invaders was automatically updated from 4 to 3. "
                    "This is following the DQN paper where it was noticed that a frame-skip of 3 makes the "
                    "laser rays disappear. To force frame-skip of 4, please use SpaceInvadersNoFrameskip-v4."
                )
                self.frame_skip = 3
            self.env = MaxOverFramesAndFrameskipEnvWrapper(
                self.env,
                frameskip=self.frame_skip,
                max_over_num_frames=self.max_over_num_frames)
        else:
            self.env.unwrapped.frameskip = self.frame_skip

        self.state_space = StateSpace({})

        # observations
        if not isinstance(self.env.observation_space, gym.spaces.dict.Dict):
            state_space = {'observation': self.env.observation_space}
        else:
            state_space = self.env.observation_space.spaces

        for observation_space_name, observation_space in state_space.items():
            if observation_space_type == ObservationSpaceType.Tensor:
                # we consider arbitrary input tensor which does not necessarily represent images
                self.state_space[
                    observation_space_name] = TensorObservationSpace(
                        shape=np.array(observation_space.shape),
                        low=observation_space.low,
                        high=observation_space.high)
            elif observation_space_type == ObservationSpaceType.Image or len(
                    observation_space.shape) == 3:
                # we assume gym has image observations (with arbitrary number of channels) where their values are
                # within 0-255, and where the channel dimension is the last dimension
                if observation_space.shape[-1] in [1, 3]:
                    self.state_space[
                        observation_space_name] = ImageObservationSpace(
                            shape=np.array(observation_space.shape),
                            high=255,
                            channels_axis=-1)
                else:
                    # For any number of channels other than 1 or 3, use the generic PlanarMaps space
                    self.state_space[
                        observation_space_name] = PlanarMapsObservationSpace(
                            shape=np.array(observation_space.shape),
                            low=0,
                            high=255,
                            channels_axis=-1)
            elif observation_space_type == ObservationSpaceType.Vector or len(
                    observation_space.shape) == 1:
                self.state_space[
                    observation_space_name] = VectorObservationSpace(
                        shape=observation_space.shape[0],
                        low=observation_space.low,
                        high=observation_space.high)
            else:
                raise screen.error(
                    "Failed to instantiate Gym environment class %s with observation space type %s"
                    % (env_class, observation_space_type),
                    crash=True)

        if 'desired_goal' in state_space.keys():
            self.goal_space = self.state_space['desired_goal']

        # actions
        if type(self.env.action_space) == gym.spaces.box.Box:
            self.action_space = BoxActionSpace(
                shape=self.env.action_space.shape,
                low=self.env.action_space.low,
                high=self.env.action_space.high)
        elif type(self.env.action_space) == gym.spaces.discrete.Discrete:
            actions_description = []
            if hasattr(self.env.unwrapped, 'get_action_meanings'):
                actions_description = self.env.unwrapped.get_action_meanings()
            self.action_space = DiscreteActionSpace(
                num_actions=self.env.action_space.n,
                descriptions=actions_description)
        else:
            raise screen.error((
                "Failed to instantiate gym environment class {} due to unsupported "
                "action space {}. Expected BoxActionSpace or DiscreteActionSpace."
            ).format(env_class, self.env.action_space),
                               crash=True)

        if self.human_control:
            # TODO: add this to the action space
            # map keyboard keys to actions
            self.key_to_action = {}
            if hasattr(self.env.unwrapped, 'get_keys_to_action'):
                self.key_to_action = self.env.unwrapped.get_keys_to_action()
            else:
                screen.error(
                    "Error: Environment {} does not support human control.".
                    format(self.env),
                    crash=True)

        # initialize the state by getting a new state from the environment
        self.reset_internal_state(True)

        # render
        if self.is_rendered:
            image = self.get_rendered_image()
            scale = 1
            if self.human_control:
                scale = 2
            if not self.native_rendering:
                self.renderer.create_screen(image.shape[1] * scale,
                                            image.shape[0] * scale)

        # the info is only updated after the first step
        self.state = self.step(self.action_space.default_action).next_state
        self.state_space['measurements'] = VectorObservationSpace(
            shape=len(self.info.keys()))

        if self.env.spec and custom_reward_threshold is None:
            self.reward_success_threshold = self.env.spec.reward_threshold
            self.reward_space = RewardSpace(
                1, reward_success_threshold=self.reward_success_threshold)

        self.target_success_rate = target_success_rate
agent_params.exploration.epsilon_schedule = LinearSchedule(initial_value=0, final_value=0, decay_steps=1)
agent_params.exploration.evaluation_epsilon = 0

# can use either a kNN or a NN based model for predicting which actions not to max over in the bellman equation
agent_params.algorithm.action_drop_method_parameters = KNNParameters()

###########
# Dataset #
###########
DATATSET_PATH = 'cartpole_dataset.csv'
agent_params.memory = EpisodicExperienceReplayParameters()
agent_params.memory.load_memory_from_file_path = CsvDataset(DATATSET_PATH, is_episodic = True)

spaces = SpacesDefinition(state=StateSpace({'observation': VectorObservationSpace(shape=4)}),
                          goal=None,
                          action=DiscreteActionSpace(2),
                          reward=RewardSpace(1))

#################
# Visualization #
#################

vis_params = VisualizationParameters()
vis_params.dump_gifs = True

########
# Test #
########
preset_validation_params = PresetValidationParameters()
preset_validation_params.test = True
preset_validation_params.min_reward_threshold = 150
def test_get_control_param():
    action_space = DiscreteActionSpace(3)
    policy = Greedy(action_space)
    assert policy.get_control_param() == 0
def test_init():
    # discrete control
    action_space = DiscreteActionSpace(3)
Exemplo n.º 22
0
    def __init__(
            self,
            level: LevelSelection,
            seed: int,
            frame_skip: int,
            human_control: bool,
            custom_reward_threshold: Union[int, float],
            visualization_parameters: VisualizationParameters,
            host: str,
            port: int,
            timeout: float,
            number_of_vehicles: int,
            number_of_walkers: int,
            weather_id: int,  #rendering_mode: bool,
            ego_vehicle_filter: str,
            display_size: int,
            sensors: List[SensorTypes],
            camera_height: int,
            camera_width: int,
            lidar_bin: float,
            obs_range: float,
            display_route: bool,
            render_pygame: bool,
            d_behind: float,
            out_lane_thres: float,
            desired_speed: float,
            max_past_step: int,
            dt: float,
            discrete: bool,
            discrete_acc: List[float],
            discrete_steer: List[float],
            continuous_accel_range: List[float],
            continuous_steer_range: List[float],
            max_ego_spawn_times: int,
            max_time_episode: int,
            max_waypt: int,
            **kwargs):
        super().__init__(level, seed, frame_skip, human_control,
                         custom_reward_threshold, visualization_parameters)

        self.level = level
        # self.frame_skip = frame_skip
        # self.seed = seed
        # self.human_control = human_control
        # self.custom_reward_threshold = custom_reward_threshold
        # self.visualization_paramters = visualization_parameters

        self.host = host
        self.port = port
        self.timeout = timeout
        self.number_of_vehicles = number_of_vehicles
        self.number_of_walkers = number_of_walkers
        self.weather_id = weather_id

        self.ego_vehicle_filter = ego_vehicle_filter
        self.display_size = display_size
        self.sensors = sensors
        self.camera_height = camera_height
        self.camera_width = camera_width
        self.obs_range = obs_range
        self.lidar_bin = lidar_bin
        self.obs_size = int(self.obs_range / self.lidar_bin)
        self.display_route = display_route
        self.render_pygame = render_pygame
        self.d_behind = d_behind
        self.out_lane_thres = out_lane_thres
        self.desired_speed = desired_speed

        self.max_past_step = max_past_step
        self.dt = dt
        self.discrete = discrete
        self.discrete_acc = discrete_acc
        self.discrete_steer = discrete_steer
        self.continuous_accel_range = continuous_accel_range
        self.continuous_steer_range = continuous_steer_range
        self.max_ego_spawn_times = max_ego_spawn_times
        self.max_time_episode = max_time_episode
        self.max_waypt = max_waypt

        # Connect to carla server and get world object
        print('connecting to Carla server...')
        self.client = carla.Client(self.host, self.port)
        self.client.set_timeout(self.timeout)
        self.traffic_manager = self.client.get_trafficmanager()
        self.world = self.client.load_world(level)
        print('Carla server connected!')

        # Set weather
        self.world.set_weather(CARLA_WEATHER_PRESETS[self.weather_id])

        # Get spawn points
        self._get_spawn_points()

        # Create the ego vehicle blueprint
        self.ego_bp = self._create_vehicle_bluepprint(self.ego_vehicle_filter,
                                                      color='49,8,8')

        # Collision sensor
        self.collision_hist = []  # The collision history
        self.collision_hist_l = 1  # collision history length
        self.collision_bp = self.world.get_blueprint_library().find(
            'sensor.other.collision')

        # Lidar sensor
        self.lidar_data = None
        self.lidar_height = 2.1
        self.lidar_trans = carla.Transform(
            carla.Location(x=0.0, z=self.lidar_height))
        self.lidar_bp = self.world.get_blueprint_library().find(
            'sensor.lidar.ray_cast')
        self.lidar_bp.set_attribute('channels', '32')
        self.lidar_bp.set_attribute('range', '5000')

        # Camera sensor
        self.camera_img = np.zeros((self.camera_height, self.camera_width, 3),
                                   dtype=np.uint8)
        self.camera_trans = carla.Transform(carla.Location(x=0.8, z=1.7))
        self.camera_bp = self.world.get_blueprint_library().find(
            'sensor.camera.rgb')
        # Modify the attributes of the blueprint to set image resolution and field of view.
        self.camera_bp.set_attribute('image_size_x', str(self.camera_width))
        self.camera_bp.set_attribute('image_size_y', str(self.camera_height))
        self.camera_bp.set_attribute('fov', '110')
        # Set the time in seconds between sensor captures
        self.camera_bp.set_attribute('sensor_tick', '0.02')

        # Set fixed simulation step for synchronous mode
        self.settings = self.world.get_settings()
        self.settings.fixed_delta_seconds = self.dt
        #self.settings.no_rendering_mode = rendering_mode
        self._set_synchronous_mode(True)

        # Record the time of total steps and resetting steps
        self.reset_step = 0
        self.total_step = 0

        # Action space
        if self.discrete:
            self.discrete_act = [discrete_acc, discrete_steer]
            self.n_acc = len(self.discrete_act[0])
            self.n_steer = len(self.discrete_act[1])
            self.action_space = DiscreteActionSpace(
                num_actions=self.n_acc * self.n_steer,
                descriptions=["acceleration", "steering"])
        else:
            self.action_space = BoxActionSpace(
                shape=2,
                low=np.array(
                    [continuous_accel_range[0], continuous_steer_range[0]]),
                high=np.array(
                    [continuous_accel_range[1], continuous_steer_range[1]]),
                descriptions=["acceleration", "steering"])

        # Observation space
        self.state_space = StateSpace({
            "measurements":
            VectorObservationSpace(shape=4,
                                   low=np.array([-2, -1, -5, 0]),
                                   high=np.array([2, 1, 30, 1]),
                                   measurements_names=[
                                       "lat_dist", "heading_error",
                                       "ego_speed", "safety_margin"
                                   ])
        })

        if SensorTypes.FRONT_CAMERA in self.sensors:
            self.state_space[
                SensorTypes.FRONT_CAMERA.value] = ImageObservationSpace(
                    shape=np.array([self.camera_height, self.camera_width, 3]),
                    high=255)
        if SensorTypes.LIDAR in self.sensors:
            self.state_space[
                SensorTypes.LIDAR.value] = PlanarMapsObservationSpace(
                    shape=np.array([self.obs_size, self.obs_size, 3]),
                    low=0,
                    high=255)
        if SensorTypes.BIRDEYE in self.sensors:
            self.state_space[
                SensorTypes.BIRDEYE.value] = ImageObservationSpace(
                    shape=np.array([self.obs_size, self.obs_size, 3]),
                    high=255)

        # Initialize the renderer
        self._init_renderer()

        self.reset_internal_state(True)
Exemplo n.º 23
0
    def __init__(self,
                 level: LevelSelection,
                 frame_skip: int,
                 visualization_parameters: VisualizationParameters,
                 target_success_rate: float = 1.0,
                 seed: Union[None, int] = None,
                 human_control: bool = False,
                 custom_reward_threshold: Union[int, float] = None,
                 screen_size: int = 84,
                 minimap_size: int = 64,
                 feature_minimap_maps_to_use: List = range(7),
                 feature_screen_maps_to_use: List = range(17),
                 observation_type:
                 StarcraftObservationType = StarcraftObservationType.Features,
                 disable_fog: bool = False,
                 auto_select_all_army: bool = True,
                 use_full_action_space: bool = False,
                 **kwargs):
        super().__init__(level, seed, frame_skip, human_control,
                         custom_reward_threshold, visualization_parameters,
                         target_success_rate)

        self.screen_size = screen_size
        self.minimap_size = minimap_size
        self.feature_minimap_maps_to_use = feature_minimap_maps_to_use
        self.feature_screen_maps_to_use = feature_screen_maps_to_use
        self.observation_type = observation_type
        self.features_screen_size = None
        self.feature_minimap_size = None
        self.rgb_screen_size = None
        self.rgb_minimap_size = None
        if self.observation_type == StarcraftObservationType.Features:
            self.features_screen_size = screen_size
            self.feature_minimap_size = minimap_size
        elif self.observation_type == StarcraftObservationType.RGB:
            self.rgb_screen_size = screen_size
            self.rgb_minimap_size = minimap_size
        self.disable_fog = disable_fog
        self.auto_select_all_army = auto_select_all_army
        self.use_full_action_space = use_full_action_space

        # step_mul is the equivalent to frame skipping. Not sure if it repeats actions in between or not though.
        self.env = sc2_env.SC2Env(
            map_name=self.env_id,
            step_mul=frame_skip,
            visualize=self.is_rendered,
            agent_interface_format=sc2_env.AgentInterfaceFormat(
                feature_dimensions=sc2_env.Dimensions(
                    screen=self.features_screen_size,
                    minimap=self.feature_minimap_size)
                # rgb_dimensions=sc2_env.Dimensions(
                #     screen=self.rgb_screen_size,
                #     minimap=self.rgb_screen_size
                # )
            ),
            # feature_screen_size=self.features_screen_size,
            # feature_minimap_size=self.feature_minimap_size,
            # rgb_screen_size=self.rgb_screen_size,
            # rgb_minimap_size=self.rgb_screen_size,
            disable_fog=disable_fog,
            random_seed=self.seed)

        # print all the available actions
        # self.env = available_actions_printer.AvailableActionsPrinter(self.env)

        self.reset_internal_state(True)
        """
        feature_screen:  [height_map, visibility_map, creep, power, player_id, player_relative, unit_type, selected,
                          unit_hit_points, unit_hit_points_ratio, unit_energy, unit_energy_ratio, unit_shields,
                          unit_shields_ratio, unit_density, unit_density_aa, effects]
        feature_minimap: [height_map, visibility_map, creep, camera, player_id, player_relative, selecte
        d]
        player:          [player_id, minerals, vespene, food_cap, food_army, food_workers, idle_worker_dount,
                          army_count, warp_gate_count, larva_count]
        """
        self.screen_shape = np.array(
            self.env.observation_spec()[0]['feature_screen'])
        self.screen_shape[0] = len(self.feature_screen_maps_to_use)
        self.minimap_shape = np.array(
            self.env.observation_spec()[0]['feature_minimap'])
        self.minimap_shape[0] = len(self.feature_minimap_maps_to_use)
        self.state_space = StateSpace({
            "screen":
            PlanarMapsObservationSpace(shape=self.screen_shape,
                                       low=0,
                                       high=255,
                                       channels_axis=0),
            "minimap":
            PlanarMapsObservationSpace(shape=self.minimap_shape,
                                       low=0,
                                       high=255,
                                       channels_axis=0),
            "measurements":
            VectorObservationSpace(self.env.observation_spec()[0]["player"][0])
        })
        if self.use_full_action_space:
            action_identifiers = list(self.env.action_spec()[0].functions)
            num_action_identifiers = len(action_identifiers)
            action_arguments = [(arg.name, arg.sizes)
                                for arg in self.env.action_spec()[0].types]
            sub_action_spaces = [DiscreteActionSpace(num_action_identifiers)]
            for argument in action_arguments:
                for dimension in argument[1]:
                    sub_action_spaces.append(DiscreteActionSpace(dimension))
            self.action_space = CompoundActionSpace(sub_action_spaces)
        else:
            self.action_space = BoxActionSpace(2,
                                               0,
                                               self.screen_size - 1,
                                               ["X-Axis, Y-Axis"],
                                               default_action=np.array([
                                                   self.screen_size / 2,
                                                   self.screen_size / 2
                                               ]))

        self.target_success_rate = target_success_rate
Exemplo n.º 24
0
    def get_action_space(self, json_actions):
        """Return the action space for the training algorithm

        Args:
            json_actions (dict): The json object containing the value of action_space key in model_metadata.json

        Returns:
            ActionSpace: Action space object for the particular training algorithm
        """
        try:
            if self.action_space_type == ActionSpaceTypes.CONTINUOUS.value:
                # Setting the low and high values to -1 to +1 and scaling in the environment
                low = np.array([-1.0, -1.0])
                high = np.array([1.0, 1.0])
                # action_space for CLIPPED_PPO_CONTINUOUS training algorithm is assumed to be a dict with the format:
                # action_space:{steering_angle:{low:-30.0 , high:30.0}, speed:{low:0.1, high:4.0}}
                if (json_actions[ModelMetadataKeys.STEERING_ANGLE.value][
                        ModelMetadataKeys.LOW.value] >=
                        json_actions[ModelMetadataKeys.STEERING_ANGLE.value][
                            ModelMetadataKeys.HIGH.value]
                        or json_actions[ModelMetadataKeys.SPEED.value][
                            ModelMetadataKeys.LOW.value] >=
                        json_actions[ModelMetadataKeys.SPEED.value][
                            ModelMetadataKeys.HIGH.value]):
                    log_and_exit(
                        "Action space bounds are incorrect while defining ClippedPPOActionSpaceConfig. \
                        json_actions: {}".format(json_actions),
                        SIMAPP_SIMULATION_WORKER_EXCEPTION,
                        SIMAPP_EVENT_ERROR_CODE_500,
                    )
                original_low = np.array([
                    json_actions[ModelMetadataKeys.STEERING_ANGLE.value][
                        ModelMetadataKeys.LOW.value],
                    json_actions[ModelMetadataKeys.SPEED.value][
                        ModelMetadataKeys.LOW.value],
                ])
                original_high = np.array([
                    json_actions[ModelMetadataKeys.STEERING_ANGLE.value][
                        ModelMetadataKeys.HIGH.value],
                    json_actions[ModelMetadataKeys.SPEED.value][
                        ModelMetadataKeys.HIGH.value],
                ])

                action_space = ScalableBoxActionSpace(
                    2,
                    low,
                    high,
                    default_action=0.5 * (high + low),
                    scale_action_space=True,
                    scaled_up_action_space_bounds={
                        ModelMetadataKeys.LOW.value: original_low,
                        ModelMetadataKeys.HIGH.value: original_high,
                    },
                )
            elif self.action_space_type == ActionSpaceTypes.DISCRETE.value:
                action_space = DiscreteActionSpace(
                    num_actions=len(json_actions),
                    default_action=next(
                        (i for i, v in enumerate(json_actions)
                         if v[ModelMetadataKeys.STEERING_ANGLE.value] == 0),
                        None,
                    ),
                )
            return action_space
        except Exception as ex:
            log_and_exit(
                "Error while getting action space in ClippedPPOActionSpaceConfig: {}"
                .format(ex),
                SIMAPP_SIMULATION_WORKER_EXCEPTION,
                SIMAPP_EVENT_ERROR_CODE_500,
            )
Exemplo n.º 25
0
# ER - we'll be needing an episodic replay buffer for off-policy evaluation
agent_params.memory = EpisodicExperienceReplayParameters()

# E-Greedy schedule - there is no exploration in Batch RL. Disabling E-Greedy. 
agent_params.exploration.epsilon_schedule = LinearSchedule(initial_value=0, final_value=0, decay_steps=1)
agent_params.exploration.evaluation_epsilon = 0

# can use either a kNN or a NN based model for predicting which actions not to max over in the bellman equation
#agent_params.algorithm.action_drop_method_parameters = KNNParameters()


DATATSET_PATH = 'acrobot_dataset.csv'
agent_params.memory = EpisodicExperienceReplayParameters()
agent_params.memory.load_memory_from_file_path = CsvDataset(DATATSET_PATH, is_episodic = True)

spaces = SpacesDefinition(state=StateSpace({'observation': VectorObservationSpace(shape=6)}),
                          goal=None,
                          action=DiscreteActionSpace(3),
                          reward=RewardSpace(1))

graph_manager = BatchRLGraphManager(agent_params=agent_params,
                                    env_params=None,
                                    spaces_definition=spaces,
                                    schedule_params=schedule_params,
                                    vis_params=VisualizationParameters(dump_signals_to_csv_every_x_episodes=1),
                                    reward_model_num_epochs=30,
                                    train_to_eval_ratio=0.4)
graph_manager.create_graph(task_parameters)
graph_manager.improve()
Exemplo n.º 26
0
def test_discrete():
    action_space = DiscreteActionSpace(3, ["zero", "one", "two"])
    assert action_space.shape == 1
    for i in range(100):
        assert 3 > action_space.sample() >= 0
    action_info = action_space.sample_with_info()
    assert action_info.action_probability == 1. / 3
    assert action_space.high == 2
    assert action_space.low == 0

    # list descriptions
    assert action_space.get_description(1) == "one"

    # dict descriptions
    action_space = DiscreteActionSpace(3, {1: "one", 2: "two", 0: "zero"})
    assert action_space.get_description(0) == "zero"

    # no descriptions
    action_space = DiscreteActionSpace(3)
    assert action_space.get_description(0) == "0"

    # descriptions for invalid action
    with pytest.raises(ValueError):
        assert action_space.get_description(3) == "0"
Exemplo n.º 27
0
    def __init__(self,
                 level: LevelSelection,
                 frame_skip: int,
                 visualization_parameters: VisualizationParameters,
                 additional_simulator_parameters: Dict[str, Any] = None,
                 seed: Union[None, int] = None,
                 human_control: bool = False,
                 custom_reward_threshold: Union[int, float] = None,
                 random_initialization_steps: int = 1,
                 max_over_num_frames: int = 1,
                 **kwargs):
        super().__init__(level, seed, frame_skip, human_control,
                         custom_reward_threshold, visualization_parameters)

        self.random_initialization_steps = random_initialization_steps
        self.max_over_num_frames = max_over_num_frames
        self.additional_simulator_parameters = additional_simulator_parameters

        # hide warnings
        gym.logger.set_level(40)
        """
        load and initialize environment
        environment ids can be defined in 3 ways:
        1. Native gym environments like BreakoutDeterministic-v0 for example
        2. Custom gym environments written and installed as python packages.
           This environments should have a python module with a class inheriting gym.Env, implementing the
           relevant functions (_reset, _step, _render) and defining the observation and action space
           For example: my_environment_package:MyEnvironmentClass will run an environment defined in the
           MyEnvironmentClass class
        3. Custom gym environments written as an independent module which is not installed.
           This environments should have a python module with a class inheriting gym.Env, implementing the
           relevant functions (_reset, _step, _render) and defining the observation and action space.
           For example: path_to_my_environment.sub_directory.my_module:MyEnvironmentClass will run an
           environment defined in the MyEnvironmentClass class which is located in the module in the relative path
           path_to_my_environment.sub_directory.my_module
        """
        if ':' in self.env_id:
            # custom environments
            if '/' in self.env_id or '.' in self.env_id:
                # environment in a an absolute path module written as a unix path or in a relative path module
                # written as a python import path
                env_class = short_dynamic_import(self.env_id)
            else:
                # environment in a python package
                env_class = gym.envs.registration.load(self.env_id)

            # instantiate the environment
            if self.additional_simulator_parameters:
                self.env = env_class(**self.additional_simulator_parameters)
            else:
                self.env = env_class()
        else:
            self.env = gym.make(self.env_id)

        # for classic control we want to use the native renderer because otherwise we will get 2 renderer windows
        environment_to_always_use_with_native_rendering = [
            'classic_control', 'mujoco', 'robotics'
        ]
        self.native_rendering = self.native_rendering or \
                                any([env in str(self.env.unwrapped.__class__)
                                     for env in environment_to_always_use_with_native_rendering])
        if self.native_rendering:
            if hasattr(self, 'renderer'):
                self.renderer.close()

        # seed
        if self.seed is not None:
            self.env.seed(self.seed)
            np.random.seed(self.seed)
            random.seed(self.seed)

        # frame skip and max between consecutive frames
        self.is_robotics_env = 'robotics' in str(self.env.unwrapped.__class__)
        self.is_mujoco_env = 'mujoco' in str(self.env.unwrapped.__class__)
        self.is_atari_env = 'Atari' in str(self.env.unwrapped.__class__)
        self.timelimit_env_wrapper = self.env
        if self.is_atari_env:
            self.env.unwrapped.frameskip = 1  # this accesses the atari env that is wrapped with a timelimit wrapper env
            if self.env_id == "SpaceInvadersDeterministic-v4" and self.frame_skip == 4:
                screen.warning(
                    "Warning: The frame-skip for Space Invaders was automatically updated from 4 to 3. "
                    "This is following the DQN paper where it was noticed that a frame-skip of 3 makes the "
                    "laser rays disappear. To force frame-skip of 4, please use SpaceInvadersNoFrameskip-v4."
                )
                self.frame_skip = 3
            self.env = MaxOverFramesAndFrameskipEnvWrapper(
                self.env,
                frameskip=self.frame_skip,
                max_over_num_frames=self.max_over_num_frames)
        else:
            self.env.unwrapped.frameskip = self.frame_skip

        self.state_space = StateSpace({})

        # observations
        if not isinstance(self.env.observation_space,
                          gym.spaces.dict_space.Dict):
            state_space = {'observation': self.env.observation_space}
        else:
            state_space = self.env.observation_space.spaces

        for observation_space_name, observation_space in state_space.items():
            if len(observation_space.shape
                   ) == 3 and observation_space.shape[-1] == 3:
                # we assume gym has image observations which are RGB and where their values are within 0-255
                self.state_space[
                    observation_space_name] = ImageObservationSpace(
                        shape=np.array(observation_space.shape),
                        high=255,
                        channels_axis=-1)
            else:
                self.state_space[
                    observation_space_name] = VectorObservationSpace(
                        shape=observation_space.shape[0],
                        low=observation_space.low,
                        high=observation_space.high)
        if 'desired_goal' in state_space.keys():
            self.goal_space = self.state_space['desired_goal']

        # actions
        if type(self.env.action_space) == gym.spaces.box.Box:
            self.action_space = BoxActionSpace(
                shape=self.env.action_space.shape,
                low=self.env.action_space.low,
                high=self.env.action_space.high)
        elif type(self.env.action_space) == gym.spaces.discrete.Discrete:
            actions_description = []
            if hasattr(self.env.unwrapped, 'get_action_meanings'):
                actions_description = self.env.unwrapped.get_action_meanings()
            self.action_space = DiscreteActionSpace(
                num_actions=self.env.action_space.n,
                descriptions=actions_description)

        if self.human_control:
            # TODO: add this to the action space
            # map keyboard keys to actions
            self.key_to_action = {}
            if hasattr(self.env.unwrapped, 'get_keys_to_action'):
                self.key_to_action = self.env.unwrapped.get_keys_to_action()

        # initialize the state by getting a new state from the environment
        self.reset_internal_state(True)

        # render
        if self.is_rendered:
            image = self.get_rendered_image()
            scale = 1
            if self.human_control:
                scale = 2
            if not self.native_rendering:
                self.renderer.create_screen(image.shape[1] * scale,
                                            image.shape[0] * scale)

        # measurements
        if self.env.spec is not None:
            self.timestep_limit = self.env.spec.timestep_limit
        else:
            self.timestep_limit = None

        # the info is only updated after the first step
        self.state = self.step(self.action_space.default_action).next_state
        self.state_space['measurements'] = VectorObservationSpace(
            shape=len(self.info.keys()))

        if self.env.spec and custom_reward_threshold is None:
            self.reward_success_threshold = self.env.spec.reward_threshold
            self.reward_space = RewardSpace(
                1, reward_success_threshold=self.reward_success_threshold)
Exemplo n.º 28
0
class GymEnvironment(Environment):
    def __init__(self,
                 level: LevelSelection,
                 frame_skip: int,
                 visualization_parameters: VisualizationParameters,
                 additional_simulator_parameters: Dict[str, Any] = None,
                 seed: Union[None, int] = None,
                 human_control: bool = False,
                 custom_reward_threshold: Union[int, float] = None,
                 random_initialization_steps: int = 1,
                 max_over_num_frames: int = 1,
                 **kwargs):
        super().__init__(level, seed, frame_skip, human_control,
                         custom_reward_threshold, visualization_parameters)

        self.random_initialization_steps = random_initialization_steps
        self.max_over_num_frames = max_over_num_frames
        self.additional_simulator_parameters = additional_simulator_parameters

        # hide warnings
        gym.logger.set_level(40)
        """
        load and initialize environment
        environment ids can be defined in 3 ways:
        1. Native gym environments like BreakoutDeterministic-v0 for example
        2. Custom gym environments written and installed as python packages.
           This environments should have a python module with a class inheriting gym.Env, implementing the
           relevant functions (_reset, _step, _render) and defining the observation and action space
           For example: my_environment_package:MyEnvironmentClass will run an environment defined in the
           MyEnvironmentClass class
        3. Custom gym environments written as an independent module which is not installed.
           This environments should have a python module with a class inheriting gym.Env, implementing the
           relevant functions (_reset, _step, _render) and defining the observation and action space.
           For example: path_to_my_environment.sub_directory.my_module:MyEnvironmentClass will run an
           environment defined in the MyEnvironmentClass class which is located in the module in the relative path
           path_to_my_environment.sub_directory.my_module
        """
        if ':' in self.env_id:
            # custom environments
            if '/' in self.env_id or '.' in self.env_id:
                # environment in a an absolute path module written as a unix path or in a relative path module
                # written as a python import path
                env_class = short_dynamic_import(self.env_id)
            else:
                # environment in a python package
                env_class = gym.envs.registration.load(self.env_id)

            # instantiate the environment
            if self.additional_simulator_parameters:
                self.env = env_class(**self.additional_simulator_parameters)
            else:
                self.env = env_class()
        else:
            self.env = gym.make(self.env_id)

        # for classic control we want to use the native renderer because otherwise we will get 2 renderer windows
        environment_to_always_use_with_native_rendering = [
            'classic_control', 'mujoco', 'robotics'
        ]
        self.native_rendering = self.native_rendering or \
                                any([env in str(self.env.unwrapped.__class__)
                                     for env in environment_to_always_use_with_native_rendering])
        if self.native_rendering:
            if hasattr(self, 'renderer'):
                self.renderer.close()

        # seed
        if self.seed is not None:
            self.env.seed(self.seed)
            np.random.seed(self.seed)
            random.seed(self.seed)

        # frame skip and max between consecutive frames
        self.is_robotics_env = 'robotics' in str(self.env.unwrapped.__class__)
        self.is_mujoco_env = 'mujoco' in str(self.env.unwrapped.__class__)
        self.is_atari_env = 'Atari' in str(self.env.unwrapped.__class__)
        self.timelimit_env_wrapper = self.env
        if self.is_atari_env:
            self.env.unwrapped.frameskip = 1  # this accesses the atari env that is wrapped with a timelimit wrapper env
            if self.env_id == "SpaceInvadersDeterministic-v4" and self.frame_skip == 4:
                screen.warning(
                    "Warning: The frame-skip for Space Invaders was automatically updated from 4 to 3. "
                    "This is following the DQN paper where it was noticed that a frame-skip of 3 makes the "
                    "laser rays disappear. To force frame-skip of 4, please use SpaceInvadersNoFrameskip-v4."
                )
                self.frame_skip = 3
            self.env = MaxOverFramesAndFrameskipEnvWrapper(
                self.env,
                frameskip=self.frame_skip,
                max_over_num_frames=self.max_over_num_frames)
        else:
            self.env.unwrapped.frameskip = self.frame_skip

        self.state_space = StateSpace({})

        # observations
        if not isinstance(self.env.observation_space,
                          gym.spaces.dict_space.Dict):
            state_space = {'observation': self.env.observation_space}
        else:
            state_space = self.env.observation_space.spaces

        for observation_space_name, observation_space in state_space.items():
            if len(observation_space.shape
                   ) == 3 and observation_space.shape[-1] == 3:
                # we assume gym has image observations which are RGB and where their values are within 0-255
                self.state_space[
                    observation_space_name] = ImageObservationSpace(
                        shape=np.array(observation_space.shape),
                        high=255,
                        channels_axis=-1)
            else:
                self.state_space[
                    observation_space_name] = VectorObservationSpace(
                        shape=observation_space.shape[0],
                        low=observation_space.low,
                        high=observation_space.high)
        if 'desired_goal' in state_space.keys():
            self.goal_space = self.state_space['desired_goal']

        # actions
        if type(self.env.action_space) == gym.spaces.box.Box:
            self.action_space = BoxActionSpace(
                shape=self.env.action_space.shape,
                low=self.env.action_space.low,
                high=self.env.action_space.high)
        elif type(self.env.action_space) == gym.spaces.discrete.Discrete:
            actions_description = []
            if hasattr(self.env.unwrapped, 'get_action_meanings'):
                actions_description = self.env.unwrapped.get_action_meanings()
            self.action_space = DiscreteActionSpace(
                num_actions=self.env.action_space.n,
                descriptions=actions_description)

        if self.human_control:
            # TODO: add this to the action space
            # map keyboard keys to actions
            self.key_to_action = {}
            if hasattr(self.env.unwrapped, 'get_keys_to_action'):
                self.key_to_action = self.env.unwrapped.get_keys_to_action()

        # initialize the state by getting a new state from the environment
        self.reset_internal_state(True)

        # render
        if self.is_rendered:
            image = self.get_rendered_image()
            scale = 1
            if self.human_control:
                scale = 2
            if not self.native_rendering:
                self.renderer.create_screen(image.shape[1] * scale,
                                            image.shape[0] * scale)

        # measurements
        if self.env.spec is not None:
            self.timestep_limit = self.env.spec.timestep_limit
        else:
            self.timestep_limit = None

        # the info is only updated after the first step
        self.state = self.step(self.action_space.default_action).next_state
        self.state_space['measurements'] = VectorObservationSpace(
            shape=len(self.info.keys()))

        if self.env.spec and custom_reward_threshold is None:
            self.reward_success_threshold = self.env.spec.reward_threshold
            self.reward_space = RewardSpace(
                1, reward_success_threshold=self.reward_success_threshold)

    def _wrap_state(self, state):
        if not isinstance(self.env.observation_space, gym.spaces.Dict):
            return {'observation': state}
        return state

    def _update_state(self):
        if self.is_atari_env and hasattr(self, 'current_ale_lives') \
                and self.current_ale_lives != self.env.unwrapped.ale.lives():
            if self.phase == RunPhase.TRAIN or self.phase == RunPhase.HEATUP:
                # signal termination for life loss
                self.done = True
            elif self.phase == RunPhase.TEST and not self.done:
                # the episode is not terminated in evaluation, but we need to press fire again
                self._press_fire()
            self._update_ale_lives()
        # TODO: update the measurements
        if self.state and "desired_goal" in self.state.keys():
            self.goal = self.state['desired_goal']

    def _take_action(self, action):
        if type(self.action_space) == BoxActionSpace:
            action = self.action_space.clip_action_to_space(action)

        self.state, self.reward, self.done, self.info = self.env.step(action)
        self.state = self._wrap_state(self.state)

    def _random_noop(self):
        # simulate a random initial environment state by stepping for a random number of times between 0 and 30
        step_count = 0
        random_initialization_steps = random.randint(
            0, self.random_initialization_steps)
        while self.action_space is not None and (
                self.state is None
                or step_count < random_initialization_steps):
            step_count += 1
            self.step(self.action_space.default_action)

    def _press_fire(self):
        fire_action = 1
        if self.is_atari_env and self.env.unwrapped.get_action_meanings(
        )[fire_action] == 'FIRE':
            self.current_ale_lives = self.env.unwrapped.ale.lives()
            self.step(fire_action)
            if self.done:
                self.reset_internal_state()

    def _update_ale_lives(self):
        if self.is_atari_env:
            self.current_ale_lives = self.env.unwrapped.ale.lives()

    def _restart_environment_episode(self, force_environment_reset=False):
        # prevent reset of environment if there are ale lives left
        if (self.is_atari_env and self.env.unwrapped.ale.lives() > 0) \
                and not force_environment_reset and not self.timelimit_env_wrapper._past_limit():
            self.step(self.action_space.default_action)
        else:
            self.state = self.env.reset()
            self.state = self._wrap_state(self.state)
            self._update_ale_lives()

        if self.is_atari_env:
            self._random_noop()
            self._press_fire()

        # initialize the number of lives
        self._update_ale_lives()

    def _set_mujoco_camera(self, camera_idx: int):
        """
        This function can be used to set the camera for rendering the mujoco simulator
        :param camera_idx: The index of the camera to use. Should be defined in the model
        :return: None
        """
        if self.env.unwrapped.viewer is not None and self.env.unwrapped.viewer.cam.fixedcamid != camera_idx and\
                self.env.unwrapped.viewer._ncam > camera_idx:
            from mujoco_py.generated import const
            self.env.unwrapped.viewer.cam.type = const.CAMERA_FIXED
            self.env.unwrapped.viewer.cam.fixedcamid = camera_idx

    def _get_robotics_image(self):
        self.env.render()
        image = self.env.unwrapped._get_viewer().read_pixels(
            1600, 900, depth=False)[::-1, :, :]
        image = scipy.misc.imresize(image, (270, 480, 3))
        return image

    def _render(self):
        self.env.render(mode='human')
        # required for setting up a fixed camera for mujoco
        if self.is_mujoco_env:
            self._set_mujoco_camera(0)

    def get_rendered_image(self):
        if self.is_robotics_env:
            # necessary for fetch since the rendered image is cropped to an irrelevant part of the simulator
            image = self._get_robotics_image()
        else:
            image = self.env.render(mode='rgb_array')
        # required for setting up a fixed camera for mujoco
        if self.is_mujoco_env:
            self._set_mujoco_camera(0)
        return image
Exemplo n.º 29
0
    def __init__(self,
                 level: LevelSelection,
                 frame_skip: int,
                 visualization_parameters: VisualizationParameters,
                 seed: Union[None, int] = None,
                 human_control: bool = False,
                 custom_reward_threshold: Union[int, float] = None,
                 width: int = 84,
                 height: int = 84,
                 num_rotations: int = 24,
                 episode_length: int = 50000,
                 **kwargs):
        super().__init__(level, seed, frame_skip, human_control,
                         custom_reward_threshold, visualization_parameters)

        # seed
        if self.seed is not None:
            np.random.seed(self.seed)
            random.seed(self.seed)

        self.object = Object2D(width, height, num_rotations)
        self.last_result = self.object.reset()

        self.state_space = StateSpace({})

        # image observations
        self.state_space['observation'] = PlanarMapsObservationSpace(
            shape=np.array([width, height, 3]), low=0, high=255)

        # measurements observations
        measurements_space_size = 4
        measurements_names = [
            'x-position', 'y-position', 'rotation', 'num_covered_states'
        ]
        self.state_space['measurements'] = VectorObservationSpace(
            shape=measurements_space_size,
            measurements_names=measurements_names)

        # actions
        self.num_actions = 6
        self.action_space = DiscreteActionSpace(self.num_actions)

        self.steps = 0
        self.episode_length = episode_length

        self.width = width
        self.height = height
        self.num_rotations = num_rotations
        self.bin_size = 1
        self.covered_states = np.zeros(
            (int(self.width / self.bin_size), int(self.height / self.bin_size),
             self.num_rotations))
        self.num_covered_states = 0

        # render
        if self.is_rendered:
            image = np.squeeze(self.object.render())
            self.renderer.create_screen(image.shape[1], image.shape[0])

        # initialize the state by getting a new state from the environment
        self.reset_internal_state(True)
Exemplo n.º 30
0
# NN configuration
agent_params.network_wrappers['main'].learning_rate = 0.0001
agent_params.network_wrappers['main'].replace_mse_with_huber_loss = False
agent_params.network_wrappers['main'].softmax_temperature = 0.2

# ER size
agent_params.memory = EpisodicExperienceReplayParameters()
DATATSET_PATH = os.path.join(os.path.expanduser('~'),
                             'share/Data/MLA/L2P/L2_data_rnd_RL.csv')
agent_params.memory.load_memory_from_file_path = CsvDataset(
    DATATSET_PATH, True)

# E-Greedy schedule
agent_params.exploration.epsilon_schedule = LinearSchedule(0, 0, 10000)
agent_params.exploration.evaluation_epsilon = 0

spaces = SpacesDefinition(state=StateSpace(
    {'observation': VectorObservationSpace(shape=7)}),
                          goal=None,
                          action=DiscreteActionSpace(4),
                          reward=RewardSpace(1))

graph_manager = BatchRLGraphManager(
    agent_params=agent_params,
    env_params=None,
    spaces_definition=spaces,
    schedule_params=schedule_params,
    vis_params=VisualizationParameters(dump_signals_to_csv_every_x_episodes=1),
    reward_model_num_epochs=30,
    train_to_eval_ratio=0.4)