Exemplo n.º 1
0
    def test_subgraph_components(self):
        return
        # TODO fix when we have built selective subgraph fetching correctly.
        # Create agent.
        agent_config = config_from_path("configs/ray_apex_for_pong.json")
        agent_config["execution_spec"].pop("ray_spec")
        environment = OpenAIGymEnv("Pong-v0", frameskip=4)

        # Do not build yet.
        agent = ApexAgent.from_spec(agent_config,
                                    state_space=environment.state_space,
                                    action_space=environment.action_space,
                                    auto_build=False)

        # Prepare all steps until build device strategy so we can test subgraph fetching.
        agent.graph_executor.init_execution()
        agent.graph_executor.setup_graph()

        # Meta graph must be built for sub-graph tracing.
        agent.graph_builder.build_meta_graph(agent.input_spaces)

        sub_graph = agent.graph_builder.get_subgraph(
            "update_from_external_batch")
        print("Sub graph components:")
        print(sub_graph.sub_components)
        print("Sub graph API: ")
        print(sub_graph.api_methods)
Exemplo n.º 2
0
    def test_apex_compilation(self):
        """
        Tests agent compilation without Ray to ease debugging on Windows.
        """
        agent_config = config_from_path("configs/ray_apex_for_pong.json")
        agent_config["execution_spec"].pop("ray_spec")
        environment = OpenAIGymEnv("Pong-v0", frameskip=4)

        agent = ApexAgent.from_spec(agent_config,
                                    state_space=environment.state_space,
                                    action_space=environment.action_space)
        print("Compiled {}".format(agent))
Exemplo n.º 3
0
    def test_multi_gpu_apex_agent_compilation(self):
        """
        Tests if the multi gpu strategy can compile successfully on a multi gpu system, but
        also runs on a CPU-only system using fake-GPU logic for testing purposes.
        """
        root_logger.setLevel(DEBUG)
        agent_config = config_from_path("configs/multi_gpu_ray_apex_for_pong.json")
        agent_config["execution_spec"].pop("ray_spec")
        environment = OpenAIGymEnv("Pong-v0", frameskip=4)

        agent = ApexAgent.from_spec(
            agent_config, state_space=environment.state_space, action_space=environment.action_space
        )
        print("Compiled Apex agent")
Exemplo n.º 4
0
    def test_multi_gpu_apex_agent_compilation(self):
        """
        Tests if the multi gpu strategy can compile successfully on a multi gpu system.

        THIS TEST REQUIRES A MULTI GPU SYSTEM.
        """
        root_logger.setLevel(DEBUG)
        agent_config = config_from_path("configs/multi_gpu_ray_apex_for_pong.json")
        agent_config["execution_spec"].pop("ray_spec")
        environment = OpenAIGymEnv("Pong-v0", frameskip=4)

        agent = ApexAgent.from_spec(
            agent_config, state_space=environment.state_space, action_space=environment.action_space
        )
        print("Compiled Apex agent")
Exemplo n.º 5
0
    def test_apex_compilation(self):
        """
        Tests agent compilation without Ray to ease debugging on Windows.
        """
        agent_config = config_from_path("configs/ray_apex_for_pong.json")
        agent_config["execution_spec"].pop("ray_spec")
        # TODO remove after unified.
        if get_backend() == "pytorch":
            agent_config["memory_spec"]["type"] = "mem_prioritized_replay"
        environment = OpenAIGymEnv("Pong-v0", frameskip=4)

        agent = ApexAgent.from_spec(agent_config,
                                    state_space=environment.state_space,
                                    action_space=environment.action_space)
        print('Compiled apex agent')
Exemplo n.º 6
0
    def test_post_processing(self):
        env = OpenAIGymEnv("Pong-v0", frameskip=4, max_num_noops=30, episodic_life=True)
        agent_config = config_from_path("configs/ray_apex_for_pong.json")

        # Test cpu settings for batching here.
        agent_config["memory_spec"]["type"] = "mem_prioritized_replay"
        agent_config["execution_spec"]["torch_num_threads"] = 1
        agent_config["execution_spec"]["OMP_NUM_THREADS"] = 1

        agent = ApexAgent.from_spec(
            # Uses 2015 DQN parameters as closely as possible.
            agent_config,
            state_space=env.state_space,
            # Try with "reduced" action space (actually only 3 actions, up, down, no-op)
            action_space=env.action_space
        )
        samples = 200
        rewards = np.random.random(size=samples)
        states = list(agent.preprocessed_state_space.sample(samples))
        actions = agent.action_space.sample(samples)
        terminals = np.zeros(samples, dtype=np.uint8)
        next_states = states[1:]
        next_states.extend([agent.preprocessed_state_space.sample(1)])
        next_states = np.asarray(next_states)
        states = np.asarray(states)
        weights = np.ones_like(rewards)

        for _ in range(1):
            start = time.perf_counter()
            _, loss_per_item = agent.post_process(
                dict(
                    states=states,
                    actions=actions,
                    rewards=rewards,
                    terminals=terminals,
                    next_states=next_states,
                    importance_weights=weights
                )
            )
            print("post process time = {}".format(time.perf_counter() - start))
        profile = Component.call_times
        print_call_chain(profile, False, 0.003)