Exemplo n.º 1
0
    def test_activation_functions(self):
        # Test single activation functions (no other custom computations in layer).
        space = FloatBox(shape=(3, ), add_batch_rank=True)

        # ReLU.
        relu_layer = NNLayer(activation="relu")
        test = ComponentTest(component=relu_layer,
                             input_spaces=dict(inputs=space))

        input_ = space.sample(size=5)
        expected = relu(input_)
        test.test(("apply", input_), expected_outputs=expected)

        # Again manually in case util numpy-relu is broken.
        input_ = np.array([[1.0, 2.0, -5.0], [-10.0, -100.1, 4.5]])
        expected = np.array([[1.0, 2.0, 0.0], [0.0, 0.0, 4.5]])
        test.test(("apply", input_), expected_outputs=expected)

        # Sigmoid.
        sigmoid_layer = NNLayer(activation="sigmoid")
        test = ComponentTest(component=sigmoid_layer,
                             input_spaces=dict(inputs=space))

        input_ = space.sample(size=10)
        expected = sigmoid(input_)
        test.test(("apply", input_), expected_outputs=expected)
Exemplo n.º 2
0
    def test_bernoulli_action_adapter(self):
        # Last NN layer.
        previous_nn_layer_space = FloatBox(shape=(16, ), add_batch_rank=True)
        adapter_outputs_space = FloatBox(shape=(2, ), add_batch_rank=True)
        # Action Space.
        action_space = BoolBox(shape=(2, ))

        action_adapter = BernoulliDistributionAdapter(
            action_space=action_space, activation="relu")
        test = ComponentTest(component=action_adapter,
                             input_spaces=dict(
                                 inputs=previous_nn_layer_space,
                                 adapter_outputs=adapter_outputs_space,
                             ),
                             action_space=action_space)
        action_adapter_params = test.read_variable_values(
            action_adapter.variable_registry)

        # Batch of n samples.
        inputs = previous_nn_layer_space.sample(32)

        expected_logits = relu(
            np.matmul(
                inputs, action_adapter_params[
                    "action-adapter/action-network/action-layer/dense/kernel"])
        )
        test.test(("call", inputs),
                  expected_outputs=expected_logits,
                  decimals=5)

        expected_probs = sigmoid(expected_logits)
        expected_log_probs = np.log(expected_probs)
        test.test(("get_parameters", inputs),
                  expected_outputs=dict(adapter_outputs=expected_logits,
                                        parameters=expected_probs,
                                        probabilities=expected_probs,
                                        log_probs=expected_log_probs),
                  decimals=5)