Exemplo n.º 1
0
def experiment(variant):
    from traffic.make_env import make_env
    expl_env = make_env(args.exp_name, **variant['env_kwargs'])
    eval_env = make_env(args.exp_name, **variant['env_kwargs'])
    obs_dim = eval_env.observation_space.low.size
    action_dim = eval_env.action_space.n
    label_num = expl_env.label_num
    label_dim = expl_env.label_dim

    if variant['load_kwargs']['load']:
        load_dir = variant['load_kwargs']['load_dir']
        load_data = torch.load(load_dir + '/params.pkl', map_location='cpu')
        policy = load_data['trainer/policy']
        vf = load_data['trainer/value_function']
    else:
        hidden_dim = variant['mlp_kwargs']['hidden']
        policy = nn.Sequential(nn.Linear(obs_dim, hidden_dim), nn.ReLU(),
                               nn.Linear(hidden_dim, hidden_dim), nn.ReLU(),
                               nn.Linear(hidden_dim, action_dim))
        policy = SoftmaxPolicy(policy)
        print('parameters: ',
              np.sum([p.view(-1).shape[0] for p in policy.parameters()]))

        vf = Mlp(
            hidden_sizes=[32, 32],
            input_size=obs_dim,
            output_size=1,
        )

    vf_criterion = nn.MSELoss()
    eval_policy = ArgmaxDiscretePolicy(policy, use_preactivation=True)
    expl_policy = policy

    eval_path_collector = MdpPathCollector(
        eval_env,
        eval_policy,
    )
    expl_path_collector = MdpPathCollector(
        expl_env,
        expl_policy,
    )
    trainer = PPOTrainer(policy=policy,
                         value_function=vf,
                         vf_criterion=vf_criterion,
                         **variant['trainer_kwargs'])
    algorithm = TorchOnlineRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        log_path_function=get_traffic_path_information,
        **variant['algorithm_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Exemplo n.º 2
0
def experiment(variant):
    from simple_sup import SimpleSupEnv
    expl_env = SimpleSupEnv(**variant['env_kwars'])
    eval_env = SimpleSupEnv(**variant['env_kwars'])
    obs_dim = eval_env.observation_space.low.size
    action_dim = eval_env.action_space.n

    hidden_dim = variant['hidden_dim']
    encoder = nn.Sequential(
        nn.Linear(obs_dim, hidden_dim),
        nn.ReLU(),
        nn.Linear(hidden_dim, hidden_dim),
        nn.ReLU(),
    )
    decoder = nn.Linear(hidden_dim, action_dim)
    from layers import ReshapeLayer
    sup_learner = nn.Sequential(
        nn.Linear(hidden_dim, action_dim),
        ReshapeLayer(shape=(1, action_dim)),
    )
    from sup_softmax_policy import SupSoftmaxPolicy
    policy = SupSoftmaxPolicy(encoder, decoder, sup_learner)
    print('parameters: ',
          np.sum([p.view(-1).shape[0] for p in policy.parameters()]))

    vf = Mlp(
        hidden_sizes=[],
        input_size=obs_dim,
        output_size=1,
    )
    vf_criterion = nn.MSELoss()
    eval_policy = ArgmaxDiscretePolicy(policy, use_preactivation=True)
    expl_policy = policy

    eval_path_collector = MdpPathCollector(
        eval_env,
        eval_policy,
    )
    expl_path_collector = MdpPathCollector(
        expl_env,
        expl_policy,
    )
    trainer = PPOTrainer(policy=policy,
                         value_function=vf,
                         vf_criterion=vf_criterion,
                         **variant['trainer_kwargs'])
    algorithm = TorchOnlineRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        **variant['algorithm_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Exemplo n.º 3
0
def experiment(variant):
    import sys
    from traffic.make_env import make_env
    expl_env = make_env(args.exp_name)
    eval_env = make_env(args.exp_name)
    obs_dim = eval_env.observation_space.low.size
    action_dim = eval_env.action_space.n

    gb = TrafficGraphBuilder(input_dim=4,
                             ego_init=torch.tensor([0., 1.]),
                             other_init=torch.tensor([1., 0.]),
                             edge_index=torch.tensor([[0, 0, 1, 2],
                                                      [1, 2, 0, 0]]))
    module = GNNNet(pre_graph_builder=gb,
                    node_dim=16,
                    output_dim=action_dim,
                    post_mlp_kwargs=dict(hidden_sizes=[32]),
                    num_conv_layers=3)
    policy = SoftmaxPolicy(module, **variant['policy_kwargs'])

    vf = Mlp(
        hidden_sizes=[32, 32],
        input_size=obs_dim,
        output_size=1,
    )
    vf_criterion = nn.MSELoss()
    eval_policy = ArgmaxDiscretePolicy(policy, use_preactivation=True)
    expl_policy = policy

    eval_path_collector = MdpPathCollector(
        eval_env,
        eval_policy,
    )
    expl_path_collector = MdpPathCollector(
        expl_env,
        expl_policy,
    )
    trainer = PPOTrainer(policy=policy,
                         value_function=vf,
                         vf_criterion=vf_criterion,
                         **variant['trainer_kwargs'])
    algorithm = TorchOnlineRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        **variant['algorithm_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Exemplo n.º 4
0
def experiment(variant):
    from cartpole import CartPoleEnv
    expl_env = CartPoleEnv(mode=2)
    eval_env = CartPoleEnv(mode=2)
    obs_dim = eval_env.observation_space.low.size
    action_dim = eval_env.action_space.n
    # import gym
    # expl_env = gym.make('CartPole-v0')
    # eval_env = gym.make('CartPole-v0')
    # obs_dim = eval_env.observation_space.low.size
    # action_dim = eval_env.action_space.n

    policy = SoftmaxMlpPolicy(input_size=obs_dim,
                              output_size=action_dim,
                              **variant['policy_kwargs'])
    vf = Mlp(
        hidden_sizes=[32, 32],
        input_size=obs_dim,
        output_size=1,
    )
    vf_criterion = nn.MSELoss()
    eval_policy = ArgmaxDiscretePolicy(policy, use_preactivation=True)
    expl_policy = policy

    eval_path_collector = MdpPathCollector(
        eval_env,
        eval_policy,
    )
    expl_path_collector = MdpPathCollector(
        expl_env,
        expl_policy,
    )
    trainer = PPOTrainer(policy=policy,
                         value_function=vf,
                         vf_criterion=vf_criterion,
                         **variant['trainer_kwargs'])
    algorithm = TorchOnlineRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        **variant['algorithm_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Exemplo n.º 5
0
def experiment(variant):
    import sys
    from traffic.make_env import make_env
    expl_env = make_env(args.exp_name)
    eval_env = make_env(args.exp_name)
    obs_dim = eval_env.observation_space.low.size
    action_dim = eval_env.action_space.low.size

    policy = TanhGaussianPolicy(
        obs_dim=obs_dim,
        action_dim=action_dim,
        **variant['policy_kwargs'],
    )
    vf = Mlp(
        hidden_sizes=[32, 32],
        input_size=obs_dim,
        output_size=1,
    )
    vf_criterion = nn.MSELoss()
    eval_policy = MakeDeterministic(policy)
    expl_policy = policy

    eval_path_collector = MdpPathCollector(
        eval_env,
        eval_policy,
    )
    expl_path_collector = MdpPathCollector(
        expl_env,
        expl_policy,
    )
    trainer = PPOTrainer(policy=policy,
                         value_function=vf,
                         vf_criterion=vf_criterion,
                         **variant['trainer_kwargs'])
    algorithm = TorchOnlineRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        **variant['algorithm_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Exemplo n.º 6
0
def experiment(variant):
    from simple_sup_lstm import SimpleSupLSTMEnv
    expl_env = SimpleSupLSTMEnv(**variant['env_kwargs'])
    eval_env = SimpleSupLSTMEnv(**variant['env_kwargs'])
    obs_dim = eval_env.observation_space.low.size
    action_dim = eval_env.action_space.n
    label_num = expl_env.label_num
    label_dim = expl_env.label_dim

    if variant['load_kwargs']['load']:
        load_dir = variant['load_kwargs']['load_dir']
        load_data = torch.load(load_dir + '/params.pkl', map_location='cpu')
        policy = load_data['trainer/policy']
        vf = load_data['trainer/value_function']
    else:
        hidden_dim = variant['lstm_kwargs']['hidden_dim']
        num_lstm_layers = variant['lstm_kwargs']['num_layers']
        node_dim = variant['gnn_kwargs']['node_dim']

        node_num = expl_env.node_num
        input_node_dim = int(obs_dim / node_num)
        a_0 = np.zeros(action_dim)
        h1_0 = np.zeros((node_num, hidden_dim * num_lstm_layers))
        c1_0 = np.zeros((node_num, hidden_dim * num_lstm_layers))
        h2_0 = np.zeros((node_num, hidden_dim * num_lstm_layers))
        c2_0 = np.zeros((node_num, hidden_dim * num_lstm_layers))
        latent_0 = (h1_0, c1_0, h2_0, c2_0)
        from lstm_net import LSTMNet
        lstm1_ego = LSTMNet(input_node_dim, action_dim, hidden_dim,
                            num_lstm_layers)
        lstm1_other = LSTMNet(input_node_dim, 0, hidden_dim, num_lstm_layers)
        lstm2_ego = LSTMNet(node_dim, 0, hidden_dim, num_lstm_layers)
        lstm2_other = LSTMNet(node_dim, 0, hidden_dim, num_lstm_layers)
        from graph_builder import TrafficGraphBuilder
        gb = TrafficGraphBuilder(
            input_dim=hidden_dim,
            node_num=node_num,
            ego_init=torch.tensor([0., 1.]),
            other_init=torch.tensor([1., 0.]),
        )
        from gnn_net import GNNNet
        gnn = GNNNet(
            pre_graph_builder=gb,
            node_dim=variant['gnn_kwargs']['node_dim'],
            conv_type=variant['gnn_kwargs']['conv_type'],
            num_conv_layers=variant['gnn_kwargs']['num_layers'],
            hidden_activation=variant['gnn_kwargs']['activation'],
        )
        from gnn_lstm2_net import GNNLSTM2Net
        policy_net = GNNLSTM2Net(node_num, gnn, lstm1_ego, lstm1_other,
                                 lstm2_ego, lstm2_other)
        from layers import FlattenLayer, SelectLayer
        post_net = nn.Sequential(SelectLayer(-2, 0), FlattenLayer(2),
                                 nn.ReLU(), nn.Linear(hidden_dim, action_dim))
        from softmax_lstm_policy import SoftmaxLSTMPolicy
        policy = SoftmaxLSTMPolicy(
            a_0=a_0,
            latent_0=latent_0,
            obs_dim=obs_dim,
            action_dim=action_dim,
            lstm_net=policy_net,
            post_net=post_net,
        )
        print('parameters: ',
              np.sum([p.view(-1).shape[0] for p in policy.parameters()]))

        vf = Mlp(
            hidden_sizes=[32, 32],
            input_size=obs_dim,
            output_size=1,
        )  # TODO: id is also an input

    vf_criterion = nn.MSELoss()
    from rlkit.torch.policies.make_deterministic import MakeDeterministic
    eval_policy = MakeDeterministic(policy)
    expl_policy = policy

    eval_path_collector = MdpPathCollector(
        eval_env,
        eval_policy,
    )
    expl_path_collector = MdpPathCollector(
        expl_env,
        expl_policy,
    )
    trainer = PPOTrainer(policy=policy,
                         value_function=vf,
                         vf_criterion=vf_criterion,
                         recurrent=True,
                         **variant['trainer_kwargs'])
    algorithm = TorchOnlineRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        **variant['algorithm_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Exemplo n.º 7
0
def experiment(variant):
    from simple_sup_lstm import SimpleSupLSTMEnv
    expl_env = SimpleSupLSTMEnv(**variant['env_kwargs'])
    eval_env = SimpleSupLSTMEnv(**variant['env_kwargs'])
    obs_dim = eval_env.observation_space.low.size
    action_dim = eval_env.action_space.n
    label_num = expl_env.label_num
    label_dim = expl_env.label_dim

    if variant['load_kwargs']['load']:
        load_dir = variant['load_kwargs']['load_dir']
        load_data = torch.load(load_dir + '/params.pkl', map_location='cpu')
        policy = load_data['trainer/policy']
        vf = load_data['trainer/value_function']
    else:
        hidden_dim = variant['lstm_kwargs']['hidden_dim']
        num_layers = variant['lstm_kwargs']['num_layers']
        a_0 = np.zeros(action_dim)
        h_0 = np.zeros(hidden_dim * num_layers)
        c_0 = np.zeros(hidden_dim * num_layers)
        latent_0 = (h_0, c_0)
        from lstm_net import LSTMNet
        lstm_net = LSTMNet(obs_dim, action_dim, hidden_dim, num_layers)
        post_net = torch.nn.Linear(hidden_dim, action_dim)
        from softmax_lstm_policy import SoftmaxLSTMPolicy
        policy = SoftmaxLSTMPolicy(
            a_0=a_0,
            latent_0=latent_0,
            obs_dim=obs_dim,
            action_dim=action_dim,
            lstm_net=lstm_net,
            post_net=post_net,
        )
        print('parameters: ',
              np.sum([p.view(-1).shape[0] for p in policy.parameters()]))

        vf = Mlp(
            hidden_sizes=[32, 32],
            input_size=obs_dim,
            output_size=1,
        )

    vf_criterion = nn.MSELoss()
    from rlkit.torch.policies.make_deterministic import MakeDeterministic
    eval_policy = MakeDeterministic(policy)
    expl_policy = policy

    eval_path_collector = MdpPathCollector(
        eval_env,
        eval_policy,
    )
    expl_path_collector = MdpPathCollector(
        expl_env,
        expl_policy,
    )
    trainer = PPOTrainer(policy=policy,
                         value_function=vf,
                         vf_criterion=vf_criterion,
                         recurrent=True,
                         **variant['trainer_kwargs'])
    algorithm = TorchOnlineRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        **variant['algorithm_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Exemplo n.º 8
0
def experiment(variant):
    from traffic.make_env import make_env
    expl_env = make_env(args.exp_name,**variant['env_kwargs'])
    eval_env = make_env(args.exp_name,**variant['env_kwargs'])
    obs_dim = eval_env.observation_space.low.size
    action_dim = eval_env.action_space.n
    label_num = expl_env.label_num
    label_dim = expl_env.label_dim

    if variant['load_kwargs']['load']:
        load_dir = variant['load_kwargs']['load_dir']
        load_data = torch.load(load_dir+'/params.pkl',map_location='cpu')
        policy = load_data['trainer/policy']
        vf = load_data['trainer/value_function']
    else:
        from graph_builder_multi import MultiTrafficGraphBuilder
        gb = MultiTrafficGraphBuilder(input_dim=4, node_num=expl_env.max_veh_num+1,
                                ego_init=torch.tensor([0.,1.]),
                                other_init=torch.tensor([1.,0.]),
                                )
        if variant['gnn_kwargs']['attention']:
            from gnn_attention_net import GNNAttentionNet
            gnn_class = GNNAttentionNet
        else:
            from gnn_net import GNNNet
            gnn_class = GNNNet
        gnn = gnn_class( 
                    pre_graph_builder=gb, 
                    node_dim=variant['gnn_kwargs']['node'],
                    conv_type=variant['gnn_kwargs']['conv_type'],
                    num_conv_layers=variant['gnn_kwargs']['layer'],
                    hidden_activation=variant['gnn_kwargs']['activation'],
                    )
        from layers import FlattenLayer, SelectLayer
        policy = nn.Sequential(
                    gnn,
                    SelectLayer(1,0),
                    FlattenLayer(),
                    nn.ReLU(),
                    nn.Linear(variant['gnn_kwargs']['node'],action_dim)
                )
        policy = SoftmaxPolicy(policy, learn_temperature=False)
        print('parameters: ',np.sum([p.view(-1).shape[0] for p in policy.parameters()]))

        vf = Mlp(
            hidden_sizes=[32, 32],
            input_size=obs_dim,
            output_size=1,
        )
        
    vf_criterion = nn.MSELoss()
    eval_policy = ArgmaxDiscretePolicy(policy,use_preactivation=True)
    expl_policy = policy

    eval_path_collector = MdpPathCollector(
        eval_env,
        eval_policy,
    )
    expl_path_collector = MdpPathCollector(
        expl_env,
        expl_policy,
    )
    trainer = PPOTrainer(
        policy=policy,
        value_function=vf,
        vf_criterion=vf_criterion,
        **variant['trainer_kwargs']
    )
    algorithm = TorchOnlineRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        log_path_function = get_traffic_path_information,
        **variant['algorithm_kwargs']
    )
    algorithm.to(ptu.device)
    algorithm.train()