Exemplo n.º 1
0
Arquivo: tac.py Projeto: yyht/RLs
    def __init__(self,
                 s_dim,
                 visual_sources,
                 visual_resolution,
                 a_dim,
                 is_continuous,

                 alpha=0.2,
                 annealing=True,
                 last_alpha=0.01,
                 ployak=0.995,
                 entropic_index=1.5,
                 discrete_tau=1.0,
                 log_std_bound=[-20, 2],
                 hidden_units={
                     'actor_continuous': {
                         'share': [128, 128],
                         'mu': [64],
                         'log_std': [64]
                     },
                     'actor_discrete': [64, 32],
                     'q': [128, 128]
                 },
                 auto_adaption=True,
                 actor_lr=5.0e-4,
                 critic_lr=1.0e-3,
                 alpha_lr=5.0e-4,
                 **kwargs):
        super().__init__(
            s_dim=s_dim,
            visual_sources=visual_sources,
            visual_resolution=visual_resolution,
            a_dim=a_dim,
            is_continuous=is_continuous,
            **kwargs)
        self.ployak = ployak
        self.discrete_tau = discrete_tau
        self.entropic_index = 2 - entropic_index
        self.log_std_min, self.log_std_max = log_std_bound[:]
        self.auto_adaption = auto_adaption
        self.annealing = annealing

        if self.auto_adaption:
            self.log_alpha = tf.Variable(initial_value=0.0, name='log_alpha', dtype=tf.float32, trainable=True)
        else:
            self.log_alpha = tf.Variable(initial_value=tf.math.log(alpha), name='log_alpha', dtype=tf.float32, trainable=False)
            if self.annealing:
                self.alpha_annealing = LinearAnnealing(alpha, last_alpha, 1e6)

        if self.is_continuous:
            self.actor_net = rls.actor_continuous(self.feat_dim, self.a_dim, hidden_units['actor_continuous'])
        else:
            self.actor_net = rls.actor_discrete(self.feat_dim, self.a_dim, hidden_units['actor_discrete'])
            self.gumbel_dist = tfp.distributions.Gumbel(0, 1)
        self.actor_tv = self.actor_net.trainable_variables
        # entropy = -log(1/|A|) = log |A|
        self.target_entropy = 0.98 * (self.a_dim if self.is_continuous else np.log(self.a_dim))

        def _q_net(): return rls.critic_q_one(self.feat_dim, self.a_dim, hidden_units['q'])
        self.critic_net = DoubleQ(_q_net)
        self.critic_target_net = DoubleQ(_q_net)
        self.critic_tv = self.critic_net.trainable_variables + self.other_tv

        self.update_target_net_weights(self.critic_target_net.weights, self.critic_net.weights)
        self.actor_lr, self.critic_lr, self.alpha_lr = map(self.init_lr, [actor_lr, critic_lr, alpha_lr])
        self.optimizer_actor, self.optimizer_critic, self.optimizer_alpha = map(self.init_optimizer, [self.actor_lr, self.critic_lr, self.alpha_lr])

        self.model_recorder(dict(
            actor=self.actor_net,
            critic_net=self.critic_net,
            log_alpha=self.log_alpha,
            optimizer_actor=self.optimizer_actor,
            optimizer_critic=self.optimizer_critic,
            optimizer_alpha=self.optimizer_alpha,
        ))
Exemplo n.º 2
0
    def __init__(
            self,
            s_dim,
            visual_sources,
            visual_resolution,
            a_dim,
            is_continuous,
            alpha=0.2,
            annealing=True,
            last_alpha=0.01,
            ployak=0.995,
            discrete_tau=1.0,
            log_std_bound=[-20, 2],
            hidden_units={
                'actor_continuous': {
                    'share': [128, 128],
                    'mu': [64],
                    'log_std': [64]
                },
                'actor_discrete': [64, 32],
                'q': [128, 128],
                'encoder': 128
            },
            auto_adaption=True,
            actor_lr=5.0e-4,
            critic_lr=1.0e-3,
            alpha_lr=5.0e-4,
            curl_lr=5.0e-4,
            img_size=64,
            **kwargs):
        super().__init__(s_dim=s_dim,
                         visual_sources=visual_sources,
                         visual_resolution=visual_resolution,
                         a_dim=a_dim,
                         is_continuous=is_continuous,
                         **kwargs)
        assert self.visual_sources == 1
        self.ployak = ployak
        self.discrete_tau = discrete_tau
        self.log_std_min, self.log_std_max = log_std_bound[:]
        self.auto_adaption = auto_adaption
        self.annealing = annealing
        self.img_size = img_size
        self.img_dim = [img_size, img_size, self.visual_dim[-1]]
        self.vis_feat_size = hidden_units['encoder']

        if self.auto_adaption:
            self.log_alpha = tf.Variable(initial_value=0.0,
                                         name='log_alpha',
                                         dtype=tf.float32,
                                         trainable=True)
        else:
            self.log_alpha = tf.Variable(initial_value=tf.math.log(alpha),
                                         name='log_alpha',
                                         dtype=tf.float32,
                                         trainable=False)
            if self.annealing:
                self.alpha_annealing = LinearAnnealing(alpha, last_alpha,
                                                       1.0e6)

        if self.is_continuous:
            self.actor_net = rls.actor_continuous(
                self.s_dim + self.vis_feat_size, self.a_dim,
                hidden_units['actor_continuous'])
        else:
            self.actor_net = rls.actor_discrete(
                self.s_dim + self.vis_feat_size, self.a_dim,
                hidden_units['actor_discrete'])
            self.gumbel_dist = tfp.distributions.Gumbel(0, 1)

        self.actor_tv = self.actor_net.trainable_variables
        # entropy = -log(1/|A|) = log |A|
        self.target_entropy = 0.98 * (-self.a_dim if self.is_continuous else
                                      np.log(self.a_dim))

        def _q_net():
            return rls.critic_q_one(self.s_dim + self.vis_feat_size,
                                    self.a_dim, hidden_units['q'])

        self.critic_net = DoubleQ(_q_net)
        self.critic_target_net = DoubleQ(_q_net)

        self.encoder = VisualEncoder(self.img_dim, hidden_units['encoder'])
        self.encoder_target = VisualEncoder(self.img_dim,
                                            hidden_units['encoder'])

        self.curl_w = tf.Variable(
            initial_value=tf.random.normal(shape=(self.vis_feat_size,
                                                  self.vis_feat_size)),
            name='curl_w',
            dtype=tf.float32,
            trainable=True)

        self.critic_tv = self.critic_net.trainable_variables + self.encoder.trainable_variables

        self.update_target_net_weights(
            self.critic_target_net.weights +
            self.encoder_target.trainable_variables,
            self.critic_net.weights + self.encoder.trainable_variables)
        self.actor_lr, self.critic_lr, self.alpha_lr, self.curl_lr = map(
            self.init_lr, [actor_lr, critic_lr, alpha_lr, curl_lr])
        self.optimizer_actor, self.optimizer_critic, self.optimizer_alpha, self.optimizer_curl = map(
            self.init_optimizer,
            [self.actor_lr, self.critic_lr, self.alpha_lr, self.curl_lr])

        self.model_recorder(
            dict(
                actor=self.actor_net,
                critic_net=self.critic_net,
                curl_w=self.curl_w,
                optimizer_actor=self.optimizer_actor,
                optimizer_critic=self.optimizer_critic,
                optimizer_alpha=self.optimizer_alpha,
                optimizer_curl=self.optimizer_curl,
            ))