import numpy as np from rlscore.learner.mmc import MMC from rlscore.utilities.reader import read_sparse from rlscore.measure import auc train_labels = np.loadtxt("./legacy_tests/data/class_train.labels") test_labels = np.loadtxt("./legacy_tests/data/class_test.labels") train_features = read_sparse("./legacy_tests/data/class_train.features") test_features = read_sparse("./legacy_tests/data/class_test.features") kwargs = {} kwargs["Y"] = train_labels kwargs["X"] = train_features kwargs["regparam"] = 1 learner = MMC(**kwargs) P = learner.predict(test_features) test_perf = auc(test_labels, P) print("test set performance: %f" %test_perf)
from rlscore.learner.mmc import MMC from rlscore.reader import read_sparse ## Import the dataset gene_data_na = read_sparse("./gene_data_na.txt") ## Build the model kwargs = {} kwargs["X"] = gene_data_na kwargs["regparam"] = 1 kwargs["kernel"] = "GaussianKernel" kwargs["number_of_clusters"] = 4 ## Set the number of clusters found with the eigengap method for this kernel learner = MMC(**kwargs) labels = learner.results # Write the results in output file # out = open("python_clustering.out","w") # for label in labels["predicted_clusters_for_training_data"]: # out.write(str(label) + "\n") # out.close()
import numpy as np from rlscore.learner.mmc import MMC from rlscore.utilities.reader import read_sparse from rlscore.measure import auc train_labels = np.loadtxt("./legacy_tests/data/class_train.labels") test_labels = np.loadtxt("./legacy_tests/data/class_test.labels") train_features = read_sparse("./legacy_tests/data/class_train.features") test_features = read_sparse("./legacy_tests/data/class_test.features") kwargs = {} kwargs["Y"] = train_labels kwargs["X"] = train_features kwargs["regparam"] = 1 learner = MMC(**kwargs) P = learner.predict(test_features) test_perf = auc(test_labels, P) print "test set performance: %f" %test_perf
import numpy as np from rlscore.learner.mmc import MMC from rlscore.reader import read_sparse from rlscore.reader import read_sparse from rlscore.measure import auc train_labels = np.loadtxt("./examples/data/class_train.labels") test_labels = np.loadtxt("./examples/data/class_test.labels") train_features = read_sparse("./examples/data/class_train.features") test_features = read_sparse("./examples/data/class_test.features") kwargs = {} kwargs["train_labels"] = train_labels kwargs["train_features"] = train_features kwargs["regparam"] = 1 learner = MMC.createLearner(**kwargs) learner.train() model = learner.getModel() P = model.predict(test_features) test_perf = auc(test_labels, P) print "test set performance: %f" %test_perf