# for loop for each cmip5 model
        for model_i in range(0, n_models):
            model = cmip5_models[model_i]  # seleting the models

            print(min_temperature, rcp, model)

            #%%

            #%%
            # finding spatial profile for future temperature

            # time averaged, area averaged historical/present day temperature
            tas_preindustrial_cube = combine_netCDF_cmip5(
                '/home/rmv203/cmip5_data/tas_Amon_' + model + '_historical*',
                'air_temperature', model)
            tas_preindustrial_cube = open_netCDF(tas_preindustrial_cube)
            tas_preindustrial_cube = select_time(tas_preindustrial_cube, 1995,
                                                 2005)
            tas_preindustrial_cube = time_average(tas_preindustrial_cube)
            tas_preindustrial_cube = area_average(tas_preindustrial_cube,
                                                  region_global)
            tas_preindustrial_data = tas_preindustrial_cube.data

            # cube to find future temperature change
            tas_cube = combine_netCDF_cmip5(
                '/home/rmv203/cmip5_historical_' + rcp + '/tas_Amon_' + model +
                '_*', 'air_temperature', model)
            tas_cube = open_netCDF(tas_cube)
            tas_test_cube = annual_average(tas_cube)
            # defining the time variable for years
            tas_test_years = tas_test_cube.coord('year').points
# Loop through each rcp run being considered
for rcp_option in range(0, rcp_options_length):
    rcp = rcp_options[rcp_option] # selecting the rcp scenario

    # for loop for each CMIP5 model
    for model_i in range(0, n_models_cmip5):
        model = cmip5_models[model_i] # seleting the models

        print(rcp, model)
        

        #%% modelled historical

        # Soil Carbon (cSoil)
        cSoil_historical_cube_new = combine_netCDF_cmip5('/home/rmv203/cmip5_data/cSoil_Lmon_'+model+'_historical*', 'soil_carbon_content', model)
        cSoil_historical_cube_new = open_netCDF(cSoil_historical_cube_new)
        # Near Surface Air Temperature (tas)
        tas_historical_cube = combine_netCDF_cmip5('/home/rmv203/cmip5_data/tas_Amon_'+model+'_historical*', 'air_temperature', model)
        tas_historical_cube = open_netCDF(tas_historical_cube)
        # Select historical time period
        cSoil_historical_cube_new = select_time(cSoil_historical_cube_new, lower_historical, upper_historical)
        tas_historical_cube = select_time(tas_historical_cube, lower_historical, upper_historical)
        # Time average
        cSoil_historical_time_av_cube_new = time_average(cSoil_historical_cube_new)
        tas_historical_cube = time_average(tas_historical_cube)
        tas_historical_data = tas_historical_cube.data

        # Converting from cubes to numpy_arrays
        cSoil_historical_time_av_data_new = cSoil_historical_time_av_cube_new.data

for rcp_option in range(0, rcp_options_length):
    rcp = rcp_options[rcp_option]  # selecting the rcp scenario

    # for loop for each CMIP5 model
    for model_i in range(0, n_models):
        model = cmip5_models[model_i]  # seleting the models

        print(rcp, model)

        #%% historical soil turnover time

        # Heterotrophic Respiration (RH)
        rh_historical_cube = combine_netCDF_cmip5(
            '/home/rmv203/cmip5_data/rh_Lmon_' + model + '_historical*',
            'heterotrophic_respiration_carbon_flux', model)
        rh_historical_cube = open_netCDF(rh_historical_cube)
        # Soil Carbon (cSoil)
        cSoil_historical_cube = combine_netCDF_cmip5(
            '/home/rmv203/cmip5_data/cSoil_Lmon_' + model + '_historical*',
            'soil_carbon_content', model)
        cSoil_historical_cube = open_netCDF(cSoil_historical_cube)
        # Near Surface Air Temperature (tas)
        tas_historical_cube = combine_netCDF_cmip5(
            '/home/rmv203/cmip5_data/tas_Amon_' + model + '_historical*',
            'air_temperature', model)
        tas_historical_cube = open_netCDF(tas_historical_cube)

        # Select historical time period
        rh_historical_cube = select_time(rh_historical_cube, lower_historical,
                                         upper_historical)
        cSoil_historical_cube = select_time(cSoil_historical_cube,
Exemplo n.º 4
0
for rcp_option in range(0, rcp_options_length):
    rcp = rcp_options[rcp_option]  # selecting the rcp scenario

    # for loop for each CMIP5 model
    for model_i in range(0, n_models_cmip5):
        model = cmip5_models[model_i]  # seleting the models

        print(rcp, model)

        #%% modelled historical

        # Heterotrophic Respiration (RH)
        rh_historical_cube_new = combine_netCDF_cmip5(
            '/home/rmv203/cmip5_data/rh_Lmon_' + model + '_historical*',
            'heterotrophic_respiration_carbon_flux', model)
        rh_historical_cube_new = open_netCDF(rh_historical_cube_new)
        # Soil Carbon (cSoil)
        cSoil_historical_cube_new = combine_netCDF_cmip5(
            '/home/rmv203/cmip5_data/cSoil_Lmon_' + model + '_historical*',
            'soil_carbon_content', model)
        cSoil_historical_cube_new = open_netCDF(cSoil_historical_cube_new)
        # Near Surface Air Temperature (tas)
        tas_historical_cube = combine_netCDF_cmip5(
            '/home/rmv203/cmip5_data/tas_Amon_' + model + '_historical*',
            'air_temperature', model)
        tas_historical_cube = open_netCDF(tas_historical_cube)
        # Select historical time period
        rh_historical_cube_new = select_time(rh_historical_cube_new,
                                             lower_historical,
                                             upper_historical)
        cSoil_historical_cube_new = select_time(cSoil_historical_cube_new,