Exemplo n.º 1
0
 def _evaluate_solution(self, encoded_solution):
     decoded = self._decode_solution(encoded_solution)
     print('Evaluate: ' + str(decoded['layers']) + ' ...')
     model_hash = hashlib.sha224(str(decoded['look_back']).encode('UTF-8') + str(decoded['weights']).encode('UTF-8')).hexdigest()
     metrics = self.cache.upsert_cache(model_hash, None)
     if metrics is None:
         rnn_solution = nn.RNNBuilder(decoded['layers'], decoded['weights'], dense_activation=self.config.dense_activation)
         if self.config.blind:
             y_predicted = rnn_solution.predict_blind(self.data['train'],
                                                  self.data['test'],
                                                  self.config.x_features, 
                                                  self.config.y_features, 
                                                  decoded['look_back'])
             y_gt = self.data['test'][self.config.y_features].values[:,:]
         else:
             y_predicted = rnn_solution.predict(self.data[self.config.x_features], decoded['look_back'])
             y_gt = self.data[self.config.y_features].values[decoded['look_back']:,:]
         mse = ut.mse_loss(y_predicted, y_gt)
         mae = ut.mae_loss(y_predicted, y_gt)
         metrics = { 'trainable_params':int(rnn_solution.trainable_params),
                     'num_hidden_layers':int(rnn_solution.hidden_layers),
                     'layers':'-'.join(map(str, decoded['layers'])), 
                     'mse':mse, 
                     'mae':mae, 
                     'num_hidden_neurons':int(np.sum(decoded['layers'][1:-1])),
                     'look_back':int(decoded['look_back'])
                     }
         del rnn_solution
         self.cache.upsert_cache(model_hash, metrics)
     else:
         print('Metrics load from cache')
     print(metrics)
     self.memory_tracker.print_diff()
     return metrics
Exemplo n.º 2
0
 def _sample_architecture(self, layers, look_back):
     rnn_solution = nn.RNNBuilder(layers, dense_activation=self.config.dense_activation)
     maes = list()
     for i in range(self.config.samples):
         weights = self._generate_weights(layers)
         rnn_solution.update_weights( weights )
         y_predicted = rnn_solution.predict(self.data[self.config.x_features], look_back)
         y_gt = self.data[self.config.y_features].values[look_back:,:]
         mae = ut.mae_loss(y_predicted, y_gt)
         maes.append(mae)
     del rnn_solution
     mean = np.mean(maes)
     sd = np.std(maes)
     metrics = {'mean':mean, 'sd':sd, 'maes':maes, 'arch':layers, 'look_back':look_back}
     return metrics