Exemplo n.º 1
0
def test(netFile, dataSet, model='RNN', trees=None):
    if trees == None:
        trees = tr.loadTrees(dataSet)
    assert netFile is not None, "Must give model to test"
    print "Testing netFile %s" % netFile
    with open(netFile, 'r') as fid:
        opts = pickle.load(fid)
        _ = pickle.load(fid)

        if (model == 'RNTN'):
            nn = RNTN(opts.wvecDim, opts.outputDim, opts.numWords,
                      opts.minibatch)
        elif (model == 'RNN'):
            nn = RNN(opts.wvecDim, opts.outputDim, opts.numWords,
                     opts.minibatch)
        elif (model == 'RNN2'):
            nn = RNN2(opts.wvecDim, opts.middleDim, opts.outputDim,
                      opts.numWords, opts.minibatch)
        elif (opts.model == 'RNN3'):
            nn = RNN3(opts.wvecDim, opts.middleDim, opts.outputDim,
                      opts.numWords, opts.minibatch)
        elif (model == 'DCNN'):
            nn = DCNN(opts.wvecDim,
                      opts.ktop,
                      opts.m1,
                      opts.m2,
                      opts.n1,
                      opts.n2,
                      0,
                      opts.outputDim,
                      opts.numWords,
                      2,
                      opts.minibatch,
                      rho=1e-4)
            trees = cnn.tree2matrix(trees)
        else:
            raise '%s is not a valid neural network so far only RNTN, RNN, RNN2, RNN3, and DCNN' % opts.model

        nn.initParams()
        nn.fromFile(fid)

    print "Testing %s..." % model

    cost, correct, guess, total = nn.costAndGrad(trees, test=True)
    correct_sum = 0
    for i in xrange(0, len(correct)):
        correct_sum += (guess[i] == correct[i])

    # TODO
    # Plot the confusion matrix?
    conf_arr = np.zeros((5, 5))
    for i in xrange(0, len(correct)):
        current_correct = correct[i]
        current_guess = guess[i]
        conf_arr[current_correct][current_guess] += 1.0

    makeconf(conf_arr, model, dataSet)

    print "Cost %f, Acc %f" % (cost, correct_sum / float(total))
    return correct_sum / float(total)
Exemplo n.º 2
0
def test(netFile, dataSet, model='RNN', trees=None):
    if trees == None:
        trees = tr.loadTrees(dataSet)
    assert netFile is not None, "Must give model to test"
    print "Testing netFile %s" % netFile
    opts = None
    with open(netFile, 'r') as fid:
        opts = pickle.load(fid)
        _ = pickle.load(fid)

        if (model == 'RNTN'):
            nn = RNTN(opts.wvecDim, opts.outputDim, opts.numWords,
                      opts.minibatch)
        elif (model == 'RNN'):
            nn = RNN(opts.wvecDim, opts.outputDim, opts.numWords,
                     opts.minibatch)
        elif (model == 'RNN2'):
            nn = RNN2(opts.wvecDim, opts.middleDim, opts.outputDim,
                      opts.numWords, opts.minibatch)
        elif (opts.model == 'RNN3'):
            nn = RNN3(opts.wvecDim, opts.middleDim, opts.outputDim,
                      opts.numWords, opts.minibatch)
        elif (model == 'DCNN'):
            nn = DCNN(opts.wvecDim,
                      opts.ktop,
                      opts.m1,
                      opts.m2,
                      opts.n1,
                      opts.n2,
                      0,
                      opts.outputDim,
                      opts.numWords,
                      2,
                      opts.minibatch,
                      rho=1e-4)
            trees = cnn.tree2matrix(trees)
        else:
            raise '%s is not a valid neural network so far only RNTN, RNN, RNN2, RNN3, and DCNN' % opts.model

        nn.initParams()
        nn.fromFile(fid)

    print "Testing %s..." % model

    cost, correct, guess, total = nn.costAndGrad(trees, test=True)

    correct_sum = 0
    for i in xrange(0, len(correct)):
        correct_sum += (guess[i] == correct[i])

    cm = confusion_matrix(correct, guess)
    makeconf(cm)
    plt.savefig("plots/" + opts.model + "/confusion_matrix_" + model +
                "wvecDim_" + str(opts.wvecDim) + "_middleDim_" +
                str(opts.middleDim) + ".png")

    print "Cost %f, Acc %f" % (cost, correct_sum / float(total))
    return correct_sum / float(total)
def test(netFile, dataSet, L, model='RNN', trees=None, confusion_matrix_file=None, full=False):
    if trees==None:
        trees = tr.loadTrees(dataSet)
    if L is None:
        L = tr.loadWordEmbedding()
    assert netFile is not None, "Must give model to test"
    print "Testing netFile %s"%netFile
    with open(netFile,'r') as fid:
        opts = pickle.load(fid)
        _ = pickle.load(fid)

        if(model=='RNN2'):
            nn = RNN2(opts.wvecDim,opts.middleDim,opts.outputDim,opts.numWords,opts.minibatch)
        else:
            raise '%s is not a valid neural network , only RNN2'%opts.model

        nn.initParams(L)
        nn.fromFile(fid)

    print "Testing %s..."%model

    cost, correct, guess, total, actss = nn.costAndGrad(trees,test=True)
    if full:
        #pass
        import pickle as pkl
        with open('{}_actss_{}.pkl'.format(netFile, dataSet),'w') as fid:
            pkl.dump(actss,fid)

    correct_sum = 0
    for i in xrange(0,len(correct)):
        correct_sum+=(guess[i]==correct[i])

    # Generate confusion matrix
    if confusion_matrix_file is not None:
        cm = confusion_matrix(correct, guess)
        makeconf(cm, confusion_matrix_file)

    print "Cost %f, Acc %f"%(cost,correct_sum/float(total))
    return correct_sum/float(total)
Exemplo n.º 4
0
def run(args=None):
    usage = "usage : %prog [options]"
    parser = optparse.OptionParser(usage=usage)

    parser.add_option("--test",
                      action="store_true",
                      dest="test",
                      default=False)

    # Optimizer
    parser.add_option("--minibatch", dest="minibatch", type="int", default=30)
    parser.add_option("--optimizer",
                      dest="optimizer",
                      type="string",
                      default="adagrad")
    parser.add_option("--epochs", dest="epochs", type="int", default=50)
    parser.add_option("--step", dest="step", type="float", default=1e-2)

    parser.add_option("--middleDim", dest="middleDim", type="int", default=10)
    parser.add_option("--outputDim", dest="outputDim", type="int", default=5)
    parser.add_option("--wvecDim", dest="wvecDim", type="int", default=30)

    # for DCNN only
    parser.add_option("--ktop", dest="ktop", type="int", default=5)
    parser.add_option("--m1", dest="m1", type="int", default=10)
    parser.add_option("--m2", dest="m2", type="int", default=7)
    parser.add_option("--n1", dest="n1", type="int", default=6)
    parser.add_option("--n2", dest="n2", type="int", default=12)

    parser.add_option("--outFile",
                      dest="outFile",
                      type="string",
                      default="models/test.bin")
    parser.add_option("--inFile",
                      dest="inFile",
                      type="string",
                      default="models/test.bin")
    parser.add_option("--data", dest="data", type="string", default="train")

    parser.add_option("--model", dest="model", type="string", default="RNN")

    (opts, args) = parser.parse_args(args)

    # make this false if you dont care about your accuracies per epoch, makes things faster!
    evaluate_accuracy_while_training = True

    # Testing
    if opts.test:
        test(opts.inFile, opts.data, opts.model)
        return

    print "Loading data..."
    train_accuracies = []
    dev_accuracies = []
    # load training data
    trees = tr.loadTrees('train')
    opts.numWords = len(tr.loadWordMap())

    if (opts.model == 'RNTN'):
        nn = RNTN(opts.wvecDim, opts.outputDim, opts.numWords, opts.minibatch)
    elif (opts.model == 'RNN'):
        nn = RNN(opts.wvecDim, opts.outputDim, opts.numWords, opts.minibatch)
    elif (opts.model == 'RNN2'):
        nn = RNN2(opts.wvecDim, opts.middleDim, opts.outputDim, opts.numWords,
                  opts.minibatch)
    elif (opts.model == 'RNN3'):
        nn = RNN3(opts.wvecDim, opts.middleDim, opts.outputDim, opts.numWords,
                  opts.minibatch)
    elif (opts.model == 'DCNN'):
        nn = DCNN(opts.wvecDim,
                  opts.ktop,
                  opts.m1,
                  opts.m2,
                  opts.n1,
                  opts.n2,
                  0,
                  opts.outputDim,
                  opts.numWords,
                  2,
                  opts.minibatch,
                  rho=1e-4)
        trees = cnn.tree2matrix(trees)
    else:
        raise '%s is not a valid neural network so far only RNTN, RNN, RNN2, RNN3, and DCNN' % opts.model

    nn.initParams()

    sgd = optimizer.SGD(nn,
                        alpha=opts.step,
                        minibatch=opts.minibatch,
                        optimizer=opts.optimizer)

    dev_trees = tr.loadTrees("dev")
    for e in range(opts.epochs):
        start = time.time()
        print "Running epoch %d" % e
        sgd.run(trees)
        end = time.time()
        print "Time per epoch : %f" % (end - start)

        with open(opts.outFile, 'w') as fid:
            pickle.dump(opts, fid)
            pickle.dump(sgd.costt, fid)
            nn.toFile(fid)
        if evaluate_accuracy_while_training:
            print "testing on training set real quick"
            train_accuracies.append(
                test(opts.outFile, "train", opts.model, trees))
            print "testing on dev set real quick"
            dev_accuracies.append(
                test(opts.outFile, "dev", opts.model, dev_trees))
            # clear the fprop flags in trees and dev_trees
            for tree in trees:
                tr.leftTraverse(tree.root, nodeFn=tr.clearFprop)
            for tree in dev_trees:
                tr.leftTraverse(tree.root, nodeFn=tr.clearFprop)
            print "fprop in trees cleared"

    if evaluate_accuracy_while_training:
        pdb.set_trace()
        print train_accuracies
        print dev_accuracies
Exemplo n.º 5
0
def run(args=None):
    usage = "usage : %prog [options]"
    parser = optparse.OptionParser(usage=usage)

    parser.add_option("--test",
                      action="store_true",
                      dest="test",
                      default=False)

    # Optimizer
    parser.add_option("--minibatch", dest="minibatch", type="int", default=30)
    parser.add_option("--optimizer",
                      dest="optimizer",
                      type="string",
                      default="adagrad")
    parser.add_option("--epochs", dest="epochs", type="int", default=50)
    parser.add_option("--step", dest="step", type="float", default=1e-2)

    parser.add_option("--middleDim", dest="middleDim", type="int", default=10)
    parser.add_option("--outputDim", dest="outputDim", type="int", default=5)
    parser.add_option("--wvecDim", dest="wvecDim", type="int", default=30)

    # By @tiagokv, just to ease the first assignment test
    parser.add_option("--wvecDimBatch",
                      dest="wvecDimBatch",
                      type="string",
                      default="")

    # for DCNN only
    parser.add_option("--ktop", dest="ktop", type="int", default=5)
    parser.add_option("--m1", dest="m1", type="int", default=10)
    parser.add_option("--m2", dest="m2", type="int", default=7)
    parser.add_option("--n1", dest="n1", type="int", default=6)
    parser.add_option("--n2", dest="n2", type="int", default=12)

    parser.add_option("--outFile",
                      dest="outFile",
                      type="string",
                      default="models/test.bin")
    parser.add_option("--inFile",
                      dest="inFile",
                      type="string",
                      default="models/test.bin")
    parser.add_option("--data", dest="data", type="string", default="train")

    parser.add_option("--model", dest="model", type="string", default="RNN")

    (opts, args) = parser.parse_args(args)

    # make this false if you dont care about your accuracies per epoch, makes things faster!
    evaluate_accuracy_while_training = True

    # Testing
    if opts.test:
        test(opts.inFile, opts.data, opts.model)
        return

    print "Loading data..."
    train_accuracies = []
    dev_accuracies = []
    # load training data
    trees = tr.loadTrees('train')
    opts.numWords = len(tr.loadWordMap())

    if (opts.model == 'RNTN'):
        nn = RNTN(opts.wvecDim, opts.outputDim, opts.numWords, opts.minibatch)
    elif (opts.model == 'RNN'):
        nn = RNN(opts.wvecDim, opts.outputDim, opts.numWords, opts.minibatch)
    elif (opts.model == 'RNN2'):
        nn = RNN2(opts.wvecDim, opts.middleDim, opts.outputDim, opts.numWords,
                  opts.minibatch)
    elif (opts.model == 'RNN3'):
        nn = RNN3(opts.wvecDim, opts.middleDim, opts.outputDim, opts.numWords,
                  opts.minibatch)
    elif (opts.model == 'DCNN'):
        nn = DCNN(opts.wvecDim,
                  opts.ktop,
                  opts.m1,
                  opts.m2,
                  opts.n1,
                  opts.n2,
                  0,
                  opts.outputDim,
                  opts.numWords,
                  2,
                  opts.minibatch,
                  rho=1e-4)
        trees = cnn.tree2matrix(trees)
    else:
        raise '%s is not a valid neural network so far only RNTN, RNN, RNN2, RNN3, and DCNN' % opts.model

    nn.initParams()

    sgd = optimizer.SGD(nn,
                        alpha=opts.step,
                        minibatch=opts.minibatch,
                        optimizer=opts.optimizer)

    # assuring folder for plots exists
    if (os.path.isdir('plots') == False): os.makedirs('test')
    if (os.path.isdir('plots/' + opts.model) == False):
        os.makedirs('plots/' + opts.model)

    dev_trees = tr.loadTrees("dev")
    for e in range(opts.epochs):
        start = time.time()
        print "Running epoch %d" % e
        sgd.run(trees)
        end = time.time()
        print "Time per epoch : %f" % (end - start)

        with open(opts.outFile, 'w') as fid:
            pickle.dump(opts, fid)
            pickle.dump(sgd.costt, fid)
            nn.toFile(fid)
        if evaluate_accuracy_while_training:
            print "testing on training set real quick"
            train_accuracies.append(
                test(opts.outFile, "train", opts.model, trees))
            print "testing on dev set real quick"
            dev_accuracies.append(
                test(opts.outFile, "dev", opts.model, dev_trees))
            # clear the fprop flags in trees and dev_trees
            for tree in trees:
                tr.leftTraverse(tree.root, nodeFn=tr.clearFprop)
            for tree in dev_trees:
                tr.leftTraverse(tree.root, nodeFn=tr.clearFprop)
            print "fprop in trees cleared"

    if evaluate_accuracy_while_training:
        #pdb.set_trace()

        plt.figure()
        #Lets set up the plot
        plt.title('Accuracy in set per epochs')
        plt.plot(range(opts.epochs), train_accuracies, label='train')
        plt.plot(range(opts.epochs), dev_accuracies, label='dev')

        with open('dev_accu' + opts.model, 'a') as fid:
            fid.write(
                str(opts.wvecDim) + ',' + str(opts.middleDim) + ',' +
                str(dev_accuracies[-1]) + ';')

        #plt.axis([0,opts.epochs,0,1])
        plt.xlabel('epochs')
        plt.ylabel('accuracy')
        plt.legend(loc=2, borderaxespad=0.)

        #always save with middleDim, even if it's a one-layer RNN
        plt.savefig('plots/' + opts.model + '/accuracy_wvec_' +
                    str(opts.wvecDim) + '_middleDim_' + str(opts.middleDim) +
                    ' .png')

        print 'image saved at %s' % os.getcwd()
def run(args=None):
    usage = "usage : %prog [options]"
    parser = optparse.OptionParser(usage=usage)

    parser.add_option("--test",action="store_true",dest="test",default=False)

    # Optimizer
    parser.add_option("--minibatch",dest="minibatch",type="int",default=30)
    parser.add_option("--optimizer",dest="optimizer",type="string",
        default="adagrad")
    parser.add_option("--epochs",dest="epochs",type="int",default=50)
    parser.add_option("--step",dest="step",type="float",default=1e-2)


    parser.add_option("--middleDim",dest="middleDim",type="int",default=10)
    parser.add_option("--outputDim",dest="outputDim",type="int",default=3)
    parser.add_option("--wvecDim",dest="wvecDim",type="int",default=30)

    # for DCNN only
    parser.add_option("--ktop",dest="ktop",type="int",default=5)
    parser.add_option("--m1",dest="m1",type="int",default=10)
    parser.add_option("--m2",dest="m2",type="int",default=7)
    parser.add_option("--n1",dest="n1",type="int",default=6)
    parser.add_option("--n2",dest="n2",type="int",default=12)

    parser.add_option("--outFile",dest="outFile",type="string",
        default="models/test.bin")
    parser.add_option("--inFile",dest="inFile",type="string",
        default="models/test.bin")
    parser.add_option("--data",dest="data",type="string",default="train")

    parser.add_option("--model",dest="model",type="string",default="RNN")

    (opts,args)=parser.parse_args(args)

    # make this false if you dont care about your accuracies per epoch, makes things faster!
    evaluate_accuracy_while_training = True

    # Testing
    if opts.test:
        cmfile = opts.inFile + ".confusion_matrix-" + opts.data
        test(opts.inFile,opts.data,None,opts.model,confusion_matrix_file=cmfile,full=True)
        return

    print "Loading data..."
    train_accuracies = []
    dev_accuracies = []
    # load training data
    trees = tr.loadTrees('train')
    opts.numWords = len(tr.loadWordMap())

    #Load word embeddings
    L = tr.loadWordEmbedding()

    if(opts.model=='RNN2'):
        nn = RNN2(opts.wvecDim,opts.middleDim,opts.outputDim,opts.numWords,opts.minibatch)
    else:
        raise '%s is not a valid neural network, only RNN2'%opts.model

    nn.initParams(L)

    sgd = optimizer.SGD(nn,alpha=opts.step,minibatch=opts.minibatch,
        optimizer=opts.optimizer)


    dev_trees = tr.loadTrees("dev")
    for e in range(opts.epochs):
        start = time.time()
        print "Running epoch %d"%e
        sgd.run(trees)
        end = time.time()
        print "Time per epoch : %f"%(end-start)

        with open(opts.outFile,'w') as fid:
            pickle.dump(opts,fid)
            pickle.dump(sgd.costt,fid)
            nn.toFile(fid)
        if evaluate_accuracy_while_training:
            print "testing on training set real quick"
            train_accuracies.append(test(opts.outFile,"train",L,opts.model,trees))
            print "testing on dev set real quick"
            dev_accuracies.append(test(opts.outFile,"dev",L,opts.model,dev_trees))
            # clear the fprop flags in trees and dev_trees
            for tree in trees:
                tr.leftTraverse(tree.root,nodeFn=tr.clearFprop)
            for tree in dev_trees:
                tr.leftTraverse(tree.root,nodeFn=tr.clearFprop)
            print "fprop in trees cleared"


    if evaluate_accuracy_while_training:
        # pdb.set_trace()
        print train_accuracies
        print dev_accuracies
        # Plot train/dev_accuracies here?
        plt.figure()
        plt.plot(range(len(train_accuracies)), train_accuracies, label='Train')
        plt.plot(range(len(dev_accuracies)), dev_accuracies, label='Dev')
        plt.xlabel("Epoch")
        plt.ylabel("Accuracy")
        plt.legend()
        # plot.show()
        plt.savefig(opts.outFile + ".accuracy_plot.png")