Exemplo n.º 1
0
def eg1():

# Set up for demonstration of case 1 algorithm
# This returns the path posterior probabilities for the given example

    # Environment parameters
    sidelen = 100
    
    # Measurement parameters
    sig = 0.5    # measurement standard deviation
    g = 5       # network grid size
    t = 45.     # surveillance duration
    s0 = 20.    # starting location along first edge
    se = 45.    # ending location along final edge
    obstimes = [0.,22.,t]  # observation times
        
    # Vehicle parameters
    p = [0,1,2,7,12,17,18]  # path nodes
    
    # Parameters used for path generation
    vmax = 60./3.6
    a = 5.
    b = 1.25
    
    # Algorithm parameters
    n = 100  # number of samples
    K = 100  # minimum number of candidate paths
    vmean = 10. # mean velocity
    vvar = 4. # velocity variance
    
    # Generate graph
    G = roadnet.makegridgraph(g,sidelen)
            
    # Generate data
    tact = 0
    while abs(tact-t)>0.01:
        [z,tact] = roadnet.makedata(G,p,obstimes,s0,se,sig,vmax,a,b)
        
    t0 = time.time()
    [pp,sep,wp] = calcpostprobs(G,z,obstimes,n,K,vmean,vvar,sig*sig)
    et = time.time()-t0
    print et
    
    # Plot best paths
    np = len(pp)
    idxsort = numpy.argsort(wp)            
    nplot = min([3,np])
    plt.figure(1)
    roadnet.plotpath(G,[p,pp[idxsort[np-1]],pp[idxsort[np-2]]],'-',0.)
    for j in range(len(z)):
        plt.plot(z[j][0],z[j][1],'kx',markersize=10.,markeredgewidth=2)
    plt.show()
    return pp, wp
Exemplo n.º 2
0
def eg1():
    
# Example to demonstrate interaction detection
    
    # Environment parameters
    sidelen = 100.
    
    # Measurement parameters
    sig = 5.
    g = 6
    t = 60.
    obstimes1 = [0.,20.,40.,t]
    obstimes2 = [0.,20.,40.,t]
          
    # Generate graph
    G = roadnet.makegridgraph(g,sidelen)
    
    # Vehicle parameters
    # Object 1
    p1 = [0,1,2,8,9,15,16,22] # path
    nseg1 = len(p1)-1
    # Start and end point
    s01 = 24.   
    se1 = 36.
    # Object 2
    p2 = [27,21,15,9,8,7,6,12] # path
    # Start and end point
    s02 = 55.
    se2 = 30.
    nseg2 = len(p2)-1
    
    # Statistics for path generation
    vmax = 50/3.6
    alph = 5.
    bet = 1.25
    
    
    # Meeting parameters
    segn = [4,4]    # Meeting segment for objects
    dres = 50.       # Distance along meeting segment for object 1
    xM = roadnet.getpos(G,p1,(segn[0]-1)*sidelen+dres,sidelen)
    tM = 28.
    T = 10.
    for j in range(len(obstimes1)):
        if obstimes1[j]>(T+tM):
            obstimes1[j] += T
    for j in range(len(obstimes2)):
        if obstimes2[j]>(T+tM):
            obstimes2[j] += T
    
    p1bm = p1[0:segn[0]+1]
    p1am = p1[(segn[0]-1):(nseg1+1)]
    p2bm = p2[0:segn[1]+1] 
    p2am = p2[(segn[1]-1):(nseg2+1)]
        
    # Algorithm parameters
    n = 200 # Sample size for path posterior
    n2 = 200    # sample size for position probability approximation
    K = 100 # Number of candidate paths
    # Movement statistics
    vmean = 36/3.6  
    vvar = 2.*2.
            
    # Generate data
    z1 = roadnet.makedata2(G,p1bm,p1am,xM,tM,T,obstimes1,s01,se1,sig,vmax,alph,bet) 
    z2 = roadnet.makedata2(G,p2bm,p2am,xM,tM,T,obstimes2,s02,se2,sig,vmax,alph,bet)
    
    plt.figure(1)
    plt.clf()
    roadnet.plotpath(G,[p1,p2],'-',0.)
    plt.plot(xM[0],xM[1],'s',markerfacecolor='orange',markeredgecolor='orange',markersize=9.,markeredgewidth=3.)
    plt.xlabel('x-position (m)',fontsize=16)
    plt.ylabel('y-position (m)',fontsize=16)
    plt.tick_params(axis='both', which='major', labelsize=14)
    
    # Times at which interaction is considered    
    ntpts = 51
    tax = numpy.linspace(10,60,ntpts)
    
    t0 = time.time()
    [H,P1,P2,s1,eidx1] = calcinter(G,z1,obstimes1,z2,obstimes2,n,n2,K,tax,1000,vmean,vvar,sig*sig)
    et = time.time()-t0
    
    # Plot results
    plt.figure(2)
    plt.clf()
    roadnet.plotpath(G,[p1,p2],'-',0.)
    for j in range(len(z1)):
        plt.plot(z1[j][0],z1[j][1],'bo',mew=0.,ms=8.)
    for j in range(len(z2)):
        plt.plot(z2[j][0],z2[j][1],'ro',mew=0.,ms=8.)
        
    plt.figure(3)
    plt.clf()
    Hdiag = numpy.diag(H)
    plt.plot(tax,Hdiag,linewidth=2.5)
    plt.xlabel('t (s)',fontsize=16)
    plt.ylabel('H(t,t)',fontsize=16)
    plt.tick_params(axis='both', which='major', labelsize=14)
    plt.axis([tax[0],tax[-1],0,1])
    plt.grid(True)
    
    # Meeting place
    idxmax = numpy.argmax(Hdiag)
    plt.figure(2)
    plot_samp_pos(G,s1[idxmax],eidx1[idxmax])
    plt.plot(xM[0],xM[1],'s',markerfacecolor='orange',markeredgecolor='orange',markersize=9.,markeredgewidth=3.)
    plt.xlabel('x-position (m)',fontsize=16)
    plt.ylabel('y-position (m)',fontsize=16)
    plt.tick_params(axis='both', which='major', labelsize=14)
    
    fig = plt.figure(4)
    plt.clf()
    [tx,ty] = numpy.meshgrid(tax,tax)
    ax = fig.gca(projection='3d')
    ax.plot_surface(tx,ty,H,rstride=1,cstride=1,cmap=cm.jet)
    ax.set_xlabel('t1 (s)',fontsize=16)
    ax.set_ylabel('t2 (s)',fontsize=16)
    ax.set_zlabel('H(t1,t2)',fontsize=16)
    ax.set_zlim3d(0,1)
    for label in ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels():
        label.set_fontsize(14)
    # plt.show()
    return H,tax
Exemplo n.º 3
0
def sim1(g,nsim,t,m,n):

# [rmse,rhist] = sim1(g,nsim,t,m,n):
# Simulation for performance assessment using random paths
# Inputs:
# g- size of grid network
# nsim- number of simuations
# t- surveillance duration
# m- number of equispaced (in time) position measurements
# n- sample size for algorithm
# Outputs:
# rmse: RMS error between the true path and the MAP path (spatial)
# rhist: histogram of rank of true path
     
    # Environment parameters
    sidelen = 100
    
    # Measurement parameters
    sig = 5.    # measurement standard deviation
    s0 = 30.    # starting location along first edge
    obstimes = [0 for j in range(m)]
    for j in range(m):
        obstimes[j] = j*t/(m-1)
        
    # Vehicle parameters
    vmax = 50./3.6
    a = 5.
    b = 1.25
    vmean = vmax*a/(a+b)

    # Algorithm parameters
    K = 100  # minimum number of candidate paths
    vmean = 10. # mean velocity
    vvar = 4.   # velocity variance
    
    # Generate graph
    G = roadnet.makegridgraph(g,sidelen)
    
    rmse = [0. for j in range(len(n))]
    rhist = [[0 for i in range(n[j])] for j in range(len(n))]

    for i in range(nsim):
        # Generate random path and data
        [p,se,z] = mystats.gen_rand_path(G,t,s0,vmax,a,b,obstimes,sig)
            
        for j in range(len(n)):
            print i, j
            t0 = time.time()
            [pp,sep,wp] = calcpostprobs(G,z,obstimes,n[j],K,vmean,vvar,sig*sig)
            et = time.time()-t0
        
            # Generate output statistics
            np = len(pp)
            idxsort = numpy.argsort(wp)
            idxmax = numpy.argmax(wp)
            rmse_samp = [0 for k in range(np)]
            for k, psamp in enumerate(pp):
                rmse_samp[k] = mystats.calc_path_rmse(G,s0,p,se,psamp,sep[k])
            idxminrmse = numpy.argmin(rmse_samp)
            rhist[j][idxsort[idxminrmse]] += 1./nsim
            rmse[j] = rmse[j]+rmse_samp[idxmax]/nsim

    return rmse, rhist
                    
    
            
Exemplo n.º 4
0
def sim2(nsim):

    # Environment parameters
    sidelen = 100.0

    # Measurement parameters
    sig = 5.0
    g = 5
    t = 45.0
    obstimes1_w = [10.0, 16.0, 30.0, 40.0]  # [10,15,20] # way points only at this point
    obstimes2_w = [6.0, 13.0, 27.0, 36.0]

    # Generate graph
    G = roadnet.makegridgraph(g, sidelen)

    # Vehicle parameters
    p1 = [0, 1, 6, 7, 12, 11, 16]
    nseg1 = len(p1) - 1
    p2 = [13, 12, 7, 6, 1, 2, 3]
    nseg2 = len(p2) - 1
    vmax = 60 / 3.6
    alph = 5.0
    bet = 1.25

    # Meeting parameters
    segn = [3, 3]  # Meeting segment for objects
    dres = 50.0  # Distance along meeting segment for object 1
    xM = roadnet.getpos(G, p1, (segn[0] - 1) * sidelen + dres, sidelen)
    tM = 21.0
    T = 0.0
    t = t + T

    p1bm = p1[0 : segn[0] + 1]
    p1am = p1[(segn[0] - 1) : (nseg1 + 1)]
    p2bm = p2[0 : segn[1] + 1]
    p2am = p2[(segn[1] - 1) : (nseg2 + 1)]

    print p2bm
    print p1bm
    print p2am
    print p1am
    print xM

    # Algorithm parameters
    n = 400
    K = 10
    m1 = 2
    m2 = 2

    # Generate candidate paths
    numcandp1 = 0
    d1 = 0
    while numcandp1 < K:
        candp1 = list(nx.all_simple_paths(G, p1[0], p1[-1], d1))
        numcandp1 = len(candp1)
        d1 = d1 + 1

    numcandp2 = 0
    d2 = 0
    while numcandp2 < K:
        candp2 = list(nx.all_simple_paths(G, p2[0], p2[-1], d2))
        numcandp2 = len(candp2)
        d2 = d2 + 1

        # print numcandp
    # Put in a suitable format for processing
    segls1 = numpy.zeros((numcandp1, d1 - 1))
    for i in range(numcandp1):
        print candp1[i]
        for j in range(len(candp1[i]) - 1):
            segls1[i, j] = sidelen
    segls2 = numpy.zeros((numcandp2, d2 - 1))
    for i in range(numcandp2):
        print candp2[i]
        for j in range(len(candp2[i]) - 1):
            segls2[i, j] = sidelen

    # Generate data
    random.seed(2.0)
    z1 = roadnet.makedata2(G, p1bm, p1am, xM, tM, T, t, obstimes1_w, sig, vmax, alph, bet)
    z2 = roadnet.makedata2(G, p2bm, p2am, xM, tM, T, t, obstimes2_w, sig, vmax, alph, bet)
    random.seed()

    roadnet.plotpath(G, p2)
    xpos = z2[0, :]
    ypos = z2[1, :]
    plt.plot(xpos, ypos, "rx")

    print z1
    print z2

    ntpts = 7
    tax = numpy.linspace(16, 22, ntpts)
    bcoeff = numpy.zeros((nsim, ntpts))
    tmax = numpy.zeros((nsim))
    for cnt in range((nsim)):
        print cnt

        # Generate data
        # z1 = roadnet.makedata2(G,p1bm,p1am,xM,tM,T,t,obstimes1_w,sig,vmax,alph,bet)
        # z2 = roadnet.makedata2(G,p2bm,p2am,xM,tM,T,t,obstimes2_w,sig,vmax,alph,bet)

        # First stage of processing (case 1 for each object)
        obstimes1 = numpy.zeros((len(obstimes1_w) + 2))
        obstimes1[0] = 0.0
        for i in range(len(obstimes1_w)):
            obstimes1[i + 1] = obstimes1_w[i]
        obstimes1[-1] = t
        obstimes2 = numpy.zeros((len(obstimes2_w) + 2))
        obstimes2[0] = 0.0
        for i in range(len(obstimes2_w)):
            obstimes2[i + 1] = obstimes2_w[i]
        obstimes2[-1] = t
        [datamat1, isvalid1, pP01, v1, tcum1] = case2.arclgen(obstimes1, segls1, n, vmax, alph, bet)
        [datamat2, isvalid2, pP02, v2, tcum2] = case2.arclgen(obstimes2, segls2, n, vmax, alph, bet)

        # Convert to positions in 2D space
        xpts1 = numpy.zeros((n * numcandp1, 2 * len(obstimes1)))
        for i in range((numcandp1)):
            for k in range((n)):
                idx = k + i * n
                if isvalid1[idx]:
                    # print candp[i]
                    for j in range(len(obstimes1)):
                        pos = roadnet.getpos(G, candp1[i], datamat1[idx, j], sidelen)
                        xpts1[idx, 2 * j] = pos[0]
                        xpts1[idx, 2 * j + 1] = pos[1]
        print isvalid2.sum()
        xpts2 = numpy.zeros((n * numcandp2, 2 * len(obstimes2)))
        for i in range((numcandp2)):
            for k in range((n)):
                idx = k + i * n
                if isvalid2[idx]:
                    # print candp[i]
                    for j in range(len(obstimes2)):
                        pos = roadnet.getpos(G, candp2[i], datamat2[idx, j], sidelen)
                        if i == 14:
                            plt.plot(pos[0], pos[1], "g.")
                        xpts2[idx, 2 * j] = pos[0]
                        xpts2[idx, 2 * j + 1] = pos[1]
                    # print datamat[cnt,:]
                    # print xpts[cnt,:]

        [pP1, w1, pP1w, ww1] = case2.calcpostprobs(z1, xpts1, isvalid1, pP01, sig)

        [pP2, w2, pP2w, ww2] = case2.calcpostprobs(z2, xpts2, isvalid2, pP02, sig)

        print pP1w
        print pP2w
        print 1 / sum(ww1 ** 2)
        print 1 / sum(ww2 ** 2)

        w1cdf = numpy.cumsum(ww1)
        w2cdf = numpy.cumsum(ww2)
        maxval = -1.0
        for a in range((ntpts)):
            # print a
            random.seed(3.0)
            uj = random.uniform(0, 1.0 / m1)
            i = 0
            for j in range((m1)):
                while w2cdf[i] < uj:
                    i = i + 1
                # Find s
                pathidx = i / n
                [snum, seg, pos] = roadnet.getseg(G, candp2[pathidx], v2[i, :], tcum2[i, :], tax[a], sidelen)
                res2 = abs((pos - G.node[candp2[pathidx][snum]]["pos"]).sum())
                print pos
                # MC approximation of p1 and p2
                random.seed(4.0)
                uk = random.uniform(0, 1.0 / m2)
                l1 = 0
                l2 = 0
                post1 = 0.0
                post2 = 0.0
                # print i, ww2[i]
                for k in range((m2)):
                    while w1cdf[l1] < uk:
                        l1 = l1 + 1
                    while w2cdf[l2] < uk:
                        l2 = l2 + 1
                    pathidx1 = l1 / n
                    [snum1, seg1, pos1] = roadnet.getseg(G, candp1[pathidx1], v1[l1, :], tcum1[l1, :], tax[a], sidelen)
                    print pos1
                    if (seg1[0] == seg[0]) and (seg1[1] == seg[1]):
                        if snum1 > 0:
                            tleft = tax[a] - tcum1[l1, snum1 - 1]
                        else:
                            tleft = tax[a]
                        post1 = post1 + scipy.stats.beta.pdf(res2 / (vmax * tleft), alph, bet) / (m2 * vmax * tleft)
                    elif (seg1[0] == seg[1]) and (seg1[1] == seg[0]):
                        if snum1 > 0:
                            tleft = tax[a] - tcum1[l1, snum1 - 1]
                        else:
                            tleft = tax[a]
                        # print tcum1[l1,:]
                        # print tleft
                        # print vmax*tleft
                        # print res2
                        print (sidelen - res2)
                        print tleft
                        post1 = post1 + scipy.stats.beta.pdf((sidelen - res2) / (vmax * tleft), alph, bet) / (
                            m2 * vmax * tleft
                        )
                    pathidx2 = l2 / n
                    [snum2, seg2, pos2] = roadnet.getseg(G, candp2[pathidx2], v2[l2, :], tcum2[l2, :], tax[a], sidelen)
                    # print seg, seg2
                    if (seg2[0] == seg[0]) and (seg2[1] == seg[1]):
                        if snum2 > 0:
                            tleft = tax[a] - tcum2[l2, snum2 - 1]
                        else:
                            tleft = tax[a]
                        post2 = post2 + scipy.stats.beta.pdf(res2 / (vmax * tleft), alph, bet) / (m2 * vmax * tleft)
                    uk = uk + 1.0 / m2
                # print post1, post2
                if post2 > 1e-20:
                    bcoeff[cnt, a] = bcoeff[cnt, a] + math.sqrt(post1 / post2) / m1
                uj = uj + 1.0 / m1
            if bcoeff[cnt, a] > maxval:
                maxval = bcoeff[cnt, a]
                tmax[cnt] = tax[a]

        # print bcoeff

    return bcoeff, tmax
Exemplo n.º 5
0
def sim1(nsim):

    # Environment parameters
    sidelen = 100.0

    # Measurement parameters
    sig = 5.0
    g = 5
    t = 60
    t = 40.0
    obstimes1_w = [10]  # [10,15,20] # way points only at this point
    obstimes2_w = [5, 20]

    # Vehicle parameters
    # p = [0,1,7,13,14,15,21,22]
    p1 = [0, 1, 6, 7, 12, 11, 16]
    p2 = [13, 12, 7, 6, 1, 2]
    # p = [0,1,2,7]
    vmax = 60 / 3.6
    alph = 5
    bet = 1.25

    # Algorithm parameters
    n = 100
    K = 5
    m1 = 10
    m2 = 10

    # Generate graph
    G = roadnet.makegridgraph(g, sidelen)

    # Generate candidate paths
    numcandp1 = 0
    d1 = 0
    while numcandp1 < K:
        candp1 = list(nx.all_simple_paths(G, p1[0], p1[-1], d1))
        numcandp1 = len(candp1)
        d1 = d1 + 1

    numcandp2 = 0
    d2 = 0
    while numcandp2 < K:
        candp2 = list(nx.all_simple_paths(G, p2[0], p2[-1], d2))
        numcandp2 = len(candp2)
        d2 = d2 + 1

        # print numcandp
    # Put in a suitable format for processing
    segls1 = numpy.zeros((numcandp1, d1 - 1))
    for i in range(numcandp1):
        print candp1[i]
        for j in range(len(candp1[i]) - 1):
            segls1[i, j] = sidelen
    segls2 = numpy.zeros((numcandp2, d2 - 1))
    for i in range(numcandp2):
        print candp2[i]
        for j in range(len(candp2[i]) - 1):
            segls2[i, j] = sidelen

    # Generate data
    tact = 0
    while abs(tact - t) > 0.01:
        [z1, tact] = roadnet.makedata(G, p1, obstimes1_w, sig, vmax, alph, bet)
    tact = 0
    while abs(tact - t) > 0.01:
        [z2, tact] = roadnet.makedata(G, p2, obstimes2_w, sig, vmax, alph, bet)

    for cnt in range((nsim)):
        print cnt

        # Generate data
        tact = 0
        while abs(tact - t) > 0.01:
            [z1, tact] = roadnet.makedata(G, p1, obstimes1_w, sig, vmax, alph, bet)
        tact = 0
        while abs(tact - t) > 0.01:
            [z2, tact] = roadnet.makedata(G, p2, obstimes2_w, sig, vmax, alph, bet)

        # First stage of processing
        obstimes1 = numpy.zeros((len(obstimes1_w) + 2))
        obstimes1[0] = 0.0
        for i in range(len(obstimes1_w)):
            obstimes1[i + 1] = obstimes1_w[i]
        obstimes1[-1] = t
        obstimes2 = numpy.zeros((len(obstimes2_w) + 2))
        obstimes2[0] = 0.0
        for i in range(len(obstimes2_w)):
            obstimes2[i + 1] = obstimes2_w[i]
        obstimes2[-1] = t
        [datamat1, isvalid1, pP01, v1, tcum1] = case2.arclgen(obstimes1, segls1, n, vmax, alph, bet)
        [datamat2, isvalid2, pP02, v2, tcum2] = case2.arclgen(obstimes2, segls2, n, vmax, alph, bet)

        # Convert to positions in 2D space
        xpts1 = numpy.zeros((n * numcandp1, 2 * len(obstimes1)))
        for i in range((numcandp1)):
            for k in range((n)):
                cnt = k + i * n
                if isvalid1[cnt]:
                    # print candp[i]
                    for j in range(len(obstimes1)):
                        pos = roadnet.getpos(G, candp1[i], datamat1[cnt, j], sidelen)
                        xpts1[cnt, 2 * j] = pos[0]
                        xpts1[cnt, 2 * j + 1] = pos[1]
        xpts2 = numpy.zeros((n * numcandp2, 2 * len(obstimes2)))
        for i in range((numcandp2)):
            for k in range((n)):
                cnt = k + i * n
                if isvalid2[cnt]:
                    # print candp[i]
                    for j in range(len(obstimes2)):
                        pos = roadnet.getpos(G, candp2[i], datamat2[cnt, j], sidelen)
                        xpts2[cnt, 2 * j] = pos[0]
                        xpts2[cnt, 2 * j + 1] = pos[1]
                    # print datamat[cnt,:]
                    # print xpts[cnt,:]

        [pP1, w1, pP1w, ww1] = case2.calcpostprobs(z1, xpts1, isvalid1, pP01, sig)

        [pP2, w2, pP2w, ww2] = case2.calcpostprobs(z2, xpts2, isvalid2, pP02, sig)

        print pP1w
        print pP2w

        npts = 20
        tax = numpy.linspace(1, 35, npts)

        bcoeff = numpy.zeros(npts)
        w1cdf = numpy.cumsum(ww1)
        w2cdf = numpy.cumsum(ww2)
        for a in range((npts)):
            # print a
            uj = random.uniform(0, 1.0 / m1)
            i = 0
            for j in range((m1)):
                while w2cdf[i] < uj:
                    i = i + 1
                # Find s
                pathidx = i / n
                [snum, seg, pos] = roadnet.getseg(G, candp2[pathidx], v2[i, :], tcum2[i, :], tax[a], sidelen)
                res2 = abs((pos - G.node[candp2[pathidx][snum]]["pos"]).sum())
                # print seg
                # MC approximation of p1 and p2
                uk = random.uniform(0, 1.0 / m2)
                l1 = 0
                l2 = 0
                post1 = 0
                post2 = 0
                # print i, ww2[i]
                for k in range((m2)):
                    while w1cdf[l1] < uk:
                        l1 = l1 + 1
                    while w2cdf[l2] < uk:
                        l2 = l2 + 1
                    pathidx1 = l1 / n
                    [snum1, seg1, pos1] = roadnet.getseg(G, candp1[pathidx1], v1[l1, :], tcum1[l1, :], tax[a], sidelen)
                    if (seg1[0] == seg[0]) and (seg1[1] == seg[1]):
                        if snum1 > 0:
                            tleft = tax[a] - tcum1[l1, snum1 - 1]
                        else:
                            tleft = tax[a]
                        post1 = post1 + scipy.stats.beta.pdf(res2 / (vmax * tleft), alph, bet) / (m2 * vmax * tleft)
                    elif (seg1[0] == seg[1]) and (seg1[1] == seg[0]):
                        if snum1 > 0:
                            tleft = tax[a] - tcum1[l1, snum1 - 1]
                        else:
                            tleft = tax[a]
                        post1 = post1 + scipy.stats.beta.pdf((sidelen - res2) / (vmax * tleft), alph, bet) / (
                            m2 * vmax * tleft
                        )
                    pathidx2 = l2 / n
                    [snum2, seg2, pos2] = roadnet.getseg(G, candp2[pathidx2], v2[l2, :], tcum2[l2, :], tax[a], sidelen)
                    # print seg, seg2
                    if (seg2[0] == seg[0]) and (seg2[1] == seg[1]):
                        if snum2 > 0:
                            tleft = tax[a] - tcum2[l2, snum2 - 1]
                        else:
                            tleft = tax[a]
                        post2 = post2 + scipy.stats.beta.pdf(res2 / (vmax * tleft), alph, bet) / (m2 * vmax * tleft)
                    uk = uk + 1.0 / m2
                # print p1, p2
                if post2 > 1e-20:
                    bcoeff[a] = bcoeff[a] + math.sqrt(post1 / post2) / m1
                uj = uj + 1.0 / m1

        print bcoeff

    return ww1, ww2