Exemplo n.º 1
0
    def load(cls, model_dir: str) -> 'CategoryClassifier':
        model_dir_path = pathlib.Path(model_dir)
        transformer = joblib.load(str(model_dir_path / cls.TRANSFORMER_PATH))
        classifier = joblib.load(str(model_dir_path / cls.CLASSIFIER_PATH))

        with open(str(model_dir_path / cls.CATEGORY_TAXONOMY_PATH), 'r') as f:
            category_taxonomy_data = json.load(f)

        category_taxonomy = Taxonomy.from_dict(category_taxonomy_data)
        instance = cls(category_taxonomy)
        instance.transformer = transformer
        instance.classifier = classifier
        return instance
Exemplo n.º 2
0
def test_predict(mocker, deepest_only, mock_response, expected_values):
    category_taxonomy = Taxonomy.from_dict({
        "en:meat": {
            "names": "meat",
        },
        "en:fish": {
            "names": "fish",
        },
        "en:salmon": {
            "names": "salmon",
            "parents": ["en:fish"],
        },
        "en:smoked-salmon": {
            "names": "salmon",
            "parents": ["en:salmon"],
        },
    })

    classifier = CategoryClassifier(category_taxonomy)

    mocker.patch(
        "robotoff.prediction.category.neural.category_classifier.http_session.post",
        return_value=mock_response,
    )

    predictions = classifier.predict(
        {
            "ingredients_tags": ["ingredient1"],
            "product_name": "Test Product"
        },
        deepest_only,
    )

    assert len(predictions) == len(expected_values)

    for prediction, (value_tag, confidence) in zip(predictions,
                                                   expected_values):
        assert prediction.value_tag == value_tag
        assert prediction.data.get("confidence") == confidence
Exemplo n.º 3
0
def _category_taxonomy() -> Taxonomy:
    return Taxonomy.from_dict({"en:mushrooms": {"lang": "fr"}})