Exemplo n.º 1
0
 def __init__(self, data_path, **kwargs):
     ds_kwargs = {
         'num_classes': 10,
         'mean': ch.tensor([0.5, 0.5, 0.5]),
         'std': ch.tensor([0.5, 0.5, 0.5]),
         'custom_class': torchvision.datasets.SVHN,
         'label_mapping': None,
         'transform_train': da.TRAIN_TRANSFORMS_DEFAULT(32),
         'transform_test': da.TEST_TRANSFORMS_DEFAULT(32)
     }
     super(SVHN, self).__init__('svhn', data_path, **ds_kwargs)
Exemplo n.º 2
0
 def __init__(self, data_path, **kwargs):
     """
     """
     ds_kwargs = {
         'num_classes': 10,
         'mean': ch.tensor([0.47889522, 0.47227842, 0.43047404]),
         'std': ch.tensor([0.24205776, 0.23828046, 0.25874835]),
         'custom_class': None,
         'label_mapping': None,
         'transform_train': da.TRAIN_TRANSFORMS_DEFAULT(32),
         'transform_test': da.TEST_TRANSFORMS_DEFAULT(32)
     }
     super(CINIC, self).__init__('cinic', data_path, **ds_kwargs)
Exemplo n.º 3
0
 def __init__(self, data_path='/tmp/', **kwargs):
     """
     """
     ds_kwargs = {
         'num_classes': 10,
         'mean': ch.tensor([0.4914, 0.4822, 0.4465]),
         'std': ch.tensor([0.2023, 0.1994, 0.2010]),
         'custom_class': datasets.CIFAR10,
         'label_mapping': None,
         'transform_train': da.TRAIN_TRANSFORMS_DEFAULT(32),
         'transform_test': da.TEST_TRANSFORMS_DEFAULT(32)
     }
     super(CIFAR, self).__init__('cifar', data_path, **ds_kwargs)
Exemplo n.º 4
0
    def __init__(
        self,
        data_path,
        corruption_type: str = 'gaussian_noise',
        severity: int = 1,
        **kwargs,
    ):
        class CustomCIFAR10(CIFAR10):
            def __init__(self, root, train=True, transform=None,
                         target_transform=None, download=False):
                VisionDataset.__init__(self, root, transform=transform,
                                       target_transform=target_transform)

                if train:
                    raise NotImplementedError(
                        'No train dataset for CIFAR-10-C')
                if download and not os.path.exists(root):
                    raise NotImplementedError(
                        'Downloading CIFAR-10-C has not been implemented')

                all_data = np.load(
                    os.path.join(root, f'{corruption_type}.npy'))
                all_labels = np.load(os.path.join(root, f'labels.npy'))

                severity_slice = slice(
                    (severity - 1) * 10000,
                    severity * 10000,
                )

                self.data = all_data[severity_slice]
                self.targets = all_labels[severity_slice]

        DataSet.__init__(
            self,
            'cifar10c',
            data_path,
            num_classes=10,
            mean=torch.tensor([0.4914, 0.4822, 0.4465]),
            std=torch.tensor([0.2023, 0.1994, 0.2010]),
            custom_class=CustomCIFAR10,
            label_mapping=None, 
            transform_train=data_augmentation.TRAIN_TRANSFORMS_DEFAULT(32),
            transform_test=data_augmentation.TEST_TRANSFORMS_DEFAULT(32)
        )