Exemplo n.º 1
0
    def test_MON13(self):
        """Check that MON13 gives correct result"""
        C = CEA_Obj(oxName="MON13", fuelName='MMH', fac_CR=None)

        Pc, MR, eps = 1000.0, 1.0, 100.0
        i, c, t = C.get_IvacCstrTc(Pc, MR, eps)

        self.assertAlmostEqual(i, 315.3551574752479, places=3)

        del C
Exemplo n.º 2
0
    def test_M10(self):
        """Check that M10 gives correct result"""
        C = CEA_Obj(oxName="LOX", fuelName='M10', fac_CR=None)

        Pc, MR, eps = 1000.0, 1.0, 100.0
        i, c, t = C.get_IvacCstrTc(Pc, MR, eps)

        self.assertAlmostEqual(i, 383.380155446, places=3)

        del C
Exemplo n.º 3
0
    def test_FLOX88(self):
        """Check that FLOX88 gives correct result"""
        C = CEA_Obj(oxName="FLOX88", fuelName='MMH', fac_CR=None)

        Pc, MR, eps = 1000.0, 1.0, 100.0
        i, c, t = C.get_IvacCstrTc(Pc, MR, eps)

        self.assertAlmostEqual(i, 378.90026661507926, places=3)

        del C
Exemplo n.º 4
0
    def test_Peroxide83(self):
        """Check that Peroxide83 gives correct result"""
        C = CEA_Obj(oxName='Peroxide83', fuelName="CH4", fac_CR=None)

        Pc, MR, eps = 1000.0, 1.0, 100.0
        i, c, t = C.get_IvacCstrTc(Pc, MR, eps)

        self.assertAlmostEqual(i, 226.278531988, places=3)

        del C
Exemplo n.º 5
0
    def test_lox_mmh_existence(self):
        """Check that LOX/MMH gives correct result"""
        C = CEA_Obj(oxName="LOX", fuelName='MMH', fac_CR=None)

        Pc, MR, eps = 1000.0, 5.88687, 100.0
        i, c, t = C.get_IvacCstrTc(Pc, MR, eps)

        self.assertAlmostEqual(i, 259.131110638, places=3)
        self.assertAlmostEqual(c, 4396.62540955, places=3)
        self.assertAlmostEqual(t, 4674.34960735, places=3)

        del C
Exemplo n.º 6
0
    def test_HYD30(self):
        """Check that HYD30 gives correct result"""
        C = CEA_Obj(propName='HYD30', fac_CR=None)

        Pc, MR, eps = 200.0, 1.0, 100.0
        i, c, t = C.get_IvacCstrTc(Pc, MR, eps)
        #s = C.get_full_cea_output( Pc=Pc, MR=MR, eps=eps)
        #print( s )

        self.assertAlmostEqual(i, 254.73410271134156, places=3)

        del C
Exemplo n.º 7
0
    def test_lox_mmh_existence(self):
        """Check that LOX/MMH gives correct result"""
        C = CEA_Obj(oxName="LOX", fuelName='MMH', fac_CR=3.0)

        Pc, MR, eps = 1000.0, 5.88687, 100.0
        i, c, t = C.get_IvacCstrTc(Pc, MR, eps)

        self.assertAlmostEqual(i, 259.1301512870862, places=3)
        self.assertAlmostEqual(c, 4396.52781695842, places=3)
        self.assertAlmostEqual(t, 4656.635824779046, places=3)

        del C
Exemplo n.º 8
0
    def test_froz_get_IvacCstrTc(self):
        """ test call to get_IvacCstrTc_exitMwGam( Pc=100.0, MR=1.0, eps=40.0) """
        C = CEA_Obj(oxName="LOX", fuelName="MMH", fac_CR=None)
        IspODE, Cstar, Tcomb = C.get_IvacCstrTc(Pc=100.0,
                                                MR=1.0,
                                                eps=40.0,
                                                frozen=1,
                                                frozenAtThroat=0)

        self.assertAlmostEqual(IspODE, 335.7939948810785, places=3)

        del C
Exemplo n.º 9
0
 def test_isp_cache(self):
     """Check that Cache is working"""
     cacheD = getCacheDict()
     len_1 = len( cacheD )
     self.assertGreater(len(cacheD), 0)
     
     C = CEA_Obj(oxName="LOX", fuelName='M19') # new propellant so increases cache.
     Pc,MR,eps = 1000.0, 4.0, 100.0
     i,c,t = C.get_IvacCstrTc(Pc,MR,eps)
     
     self.assertGreater(len(cacheD), len_1) # cache got bigger
     
     del C
Exemplo n.º 10
0
class CEA_Obj(object):
    """
    RocketCEA wraps the NASA FORTRAN CEA code to calculate Isp, cstar, and Tcomb
    
    This object wraps the English unit version of CEA_Obj to enable desired user units.    
    """
    def __init__(self,
                 propName='',
                 oxName='',
                 fuelName='',
                 useFastLookup=0,
                 makeOutput=0,
                 isp_units='sec',
                 cstar_units='ft/sec',
                 pressure_units='psia',
                 temperature_units='degR',
                 sonic_velocity_units='ft/sec',
                 enthalpy_units='BTU/lbm',
                 density_units='lbm/cuft',
                 specific_heat_units='BTU/lbm degR',
                 viscosity_units='millipoise',
                 thermal_cond_units='mcal/cm-K-s',
                 fac_CR=None,
                 make_debug_prints=False):
        """::
        
        #: RocketCEA wraps the NASA FORTRAN CEA code to calculate Isp, cstar, and Tcomb
        #: This object wraps the English unit version of CEA_Obj to enable desired user units.
        #: Same as CEA_Obj with standard units except, input and output units can be specified.
        #:  parameter             default             options
        #: isp_units            = 'sec',         # N-s/kg, m/s, km/s
        #: cstar_units          = 'ft/sec',      # m/s
        #: pressure_units       = 'psia',        # MPa, KPa, Pa, Bar, Atm, Torr
        #: temperature_units    = 'degR',        # K, C, F
        #: sonic_velocity_units = 'ft/sec',      # m/s
        #: enthalpy_units       = 'BTU/lbm',     # J/g, kJ/kg, J/kg, kcal/kg, cal/g
        #: density_units        = 'lbm/cuft',    # g/cc, sg, kg/m^3
        #: specific_heat_units  = 'BTU/lbm degR' # kJ/kg-K, cal/g-C, J/kg-K (# note: cal/g K == BTU/lbm degR)
        #: viscosity_units      = 'millipoise'   # lbf-sec/sqin, lbf-sec/sqft, lbm/ft-sec, poise, centipoise
        #: thermal_cond_units   = 'mcal/cm-K-s'  # millical/cm-degK-sec, BTU/hr-ft-degF, BTU/s-in-degF, cal/s-cm-degC, W/cm-degC
        #: fac_CR, Contraction Ratio of finite area combustor (None=infinite)
        #: if make_debug_prints is True, print debugging info to terminal.
        """

        self.isp_units = isp_units
        self.cstar_units = cstar_units
        self.pressure_units = pressure_units
        self.temperature_units = temperature_units
        self.sonic_velocity_units = sonic_velocity_units
        self.enthalpy_units = enthalpy_units
        self.density_units = density_units
        self.specific_heat_units = specific_heat_units
        self.viscosity_units = viscosity_units
        self.thermal_cond_units = thermal_cond_units
        self.fac_CR = fac_CR

        # Units objects for input/output (e.g. Pc and Pamb)
        self.Pc_U = get_units_obj('psia', pressure_units)

        # units of output quantities
        self.isp_U = get_units_obj('sec', isp_units)
        self.cstar_U = get_units_obj('ft/sec', cstar_units)
        self.temperature_U = get_units_obj('degR', temperature_units)
        self.sonic_velocity_U = get_units_obj('ft/sec', sonic_velocity_units)
        self.enthalpy_U = get_units_obj('BTU/lbm', enthalpy_units)
        self.density_U = get_units_obj('lbm/cuft', density_units)
        self.specific_heat_U = get_units_obj('BTU/lbm degR',
                                             specific_heat_units)
        self.viscosity_U = get_units_obj('millipoise', viscosity_units)
        self.thermal_cond_U = get_units_obj('mcal/cm-K-s', thermal_cond_units)

        self.cea_obj = CEA_Obj_default(propName=propName,
                                       oxName=oxName,
                                       fuelName=fuelName,
                                       useFastLookup=useFastLookup,
                                       makeOutput=makeOutput,
                                       fac_CR=fac_CR,
                                       make_debug_prints=make_debug_prints)
        self.desc = self.cea_obj.desc

    def get_IvacCstrTc(self, Pc=100.0, MR=1.0, eps=40.0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        IspVac, Cstar, Tcomb = self.cea_obj.get_IvacCstrTc(Pc=Pc,
                                                           MR=MR,
                                                           eps=eps)

        IspVac = self.isp_U.dval_to_uval(IspVac)
        Cstar = self.cstar_U.dval_to_uval(Cstar)
        Tcomb = self.temperature_U.dval_to_uval(Tcomb)

        return IspVac, Cstar, Tcomb

    def getFrozen_IvacCstrTc(self,
                             Pc=100.0,
                             MR=1.0,
                             eps=40.0,
                             frozenAtThroat=0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        IspFrozen, Cstar, Tcomb = self.cea_obj.getFrozen_IvacCstrTc(
            Pc=Pc, MR=MR, eps=eps, frozenAtThroat=frozenAtThroat)
        IspFrozen = self.isp_U.dval_to_uval(IspFrozen)
        Cstar = self.cstar_U.dval_to_uval(Cstar)
        Tcomb = self.temperature_U.dval_to_uval(Tcomb)

        return IspFrozen, Cstar, Tcomb

    def get_IvacCstrTc_exitMwGam(self, Pc=100.0, MR=1.0, eps=40.0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        IspVac, Cstar, Tcomb, mw, gam = self.cea_obj.get_IvacCstrTc_exitMwGam(
            Pc=Pc, MR=MR, eps=eps)

        IspVac = self.isp_U.dval_to_uval(IspVac)
        Cstar = self.cstar_U.dval_to_uval(Cstar)
        Tcomb = self.temperature_U.dval_to_uval(Tcomb)

        return IspVac, Cstar, Tcomb, mw, gam

    def get_IvacCstrTc_ChmMwGam(self, Pc=100.0, MR=1.0, eps=40.0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        IspVac, Cstar, Tcomb, mw, gam = self.cea_obj.get_IvacCstrTc_ChmMwGam(
            Pc=Pc, MR=MR, eps=eps)

        IspVac = self.isp_U.dval_to_uval(IspVac)
        Cstar = self.cstar_U.dval_to_uval(Cstar)
        Tcomb = self.temperature_U.dval_to_uval(Tcomb)

        return IspVac, Cstar, Tcomb, mw, gam

    def get_IvacCstrTc_ThtMwGam(self, Pc=100.0, MR=1.0, eps=40.0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        IspVac, Cstar, Tcomb, mw, gam = self.cea_obj.get_IvacCstrTc_ThtMwGam(
            Pc=Pc, MR=MR, eps=eps)

        IspVac = self.isp_U.dval_to_uval(IspVac)
        Cstar = self.cstar_U.dval_to_uval(Cstar)
        Tcomb = self.temperature_U.dval_to_uval(Tcomb)

        return IspVac, Cstar, Tcomb, mw, gam

    def __call__(self, Pc=100.0, MR=1.0, eps=40.0):
        return self.get_Isp(Pc=Pc, MR=MR, eps=eps)

    def get_Isp(self, Pc=100.0, MR=1.0, eps=40.0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        IspVac = self.cea_obj.get_Isp(Pc=Pc, MR=MR, eps=eps)
        IspVac = self.isp_U.dval_to_uval(IspVac)

        return IspVac

    def get_Cstar(self, Pc=100.0, MR=1.0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        Cstar = self.cea_obj.get_Cstar(Pc=Pc, MR=MR)
        Cstar = self.cstar_U.dval_to_uval(Cstar)
        return Cstar

    def get_Tcomb(self, Pc=100.0, MR=1.0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        Tcomb = self.cea_obj.get_Tcomb(Pc=Pc, MR=MR)
        Tcomb = self.temperature_U.dval_to_uval(Tcomb)
        return Tcomb

    def get_PcOvPe(self, Pc=100.0, MR=1.0, eps=40.0):
        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        return self.cea_obj.get_PcOvPe(Pc=Pc, MR=MR, eps=eps)

    def get_eps_at_PcOvPe(self, Pc=100.0, MR=1.0, PcOvPe=1000.0):
        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        return self.cea_obj.get_eps_at_PcOvPe(Pc=Pc, MR=MR, PcOvPe=PcOvPe)

    def get_Throat_PcOvPe(self, Pc=100.0, MR=1.0):
        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        return self.cea_obj.get_Throat_PcOvPe(Pc=Pc, MR=MR)

    def get_MachNumber(self, Pc=100.0, MR=1.0, eps=40.0):
        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        return self.cea_obj.get_MachNumber(Pc=Pc, MR=MR, eps=eps)

    def get_Temperatures(self,
                         Pc=100.0,
                         MR=1.0,
                         eps=40.0,
                         frozen=0,
                         frozenAtThroat=0):
        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        tempList = self.cea_obj.get_Temperatures(Pc=Pc,
                                                 MR=MR,
                                                 eps=eps,
                                                 frozen=frozen,
                                                 frozenAtThroat=frozenAtThroat)

        for i, T in enumerate(tempList):
            tempList[i] = self.temperature_U.dval_to_uval(T)
        return tempList  # Tc, Tthroat, Texit

    def get_SonicVelocities(self, Pc=100.0, MR=1.0, eps=40.0):
        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        sonicList = self.cea_obj.get_SonicVelocities(Pc=Pc, MR=MR, eps=eps)

        for i, S in enumerate(sonicList):
            sonicList[i] = self.sonic_velocity_U.dval_to_uval(S)
        return sonicList  # Chamber, Throat, Exit

    def get_Chamber_SonicVel(self, Pc=100.0, MR=1.0, eps=40.0):
        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        sonicVel = self.cea_obj.get_Chamber_SonicVel(Pc=Pc, MR=MR, eps=eps)

        sonicVel = self.sonic_velocity_U.dval_to_uval(sonicVel)
        return sonicVel

    def get_Enthalpies(self, Pc=100.0, MR=1.0, eps=40.0):
        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia

        hList = self.cea_obj.get_Enthalpies(Pc=Pc, MR=MR, eps=eps)
        for i, H in enumerate(hList):
            hList[i] = self.enthalpy_U.dval_to_uval(H)

        return hList

    def get_SpeciesMassFractions(self,
                                 Pc=100.0,
                                 MR=1.0,
                                 eps=40.0,
                                 frozen=0,
                                 frozenAtThroat=0,
                                 min_fraction=0.000005):
        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia

        molWtD, massFracD = self.cea_obj.get_SpeciesMassFractions(
            Pc=Pc,
            MR=MR,
            eps=eps,
            frozenAtThroat=frozenAtThroat,
            min_fraction=min_fraction)
        return molWtD, massFracD

    def get_SpeciesMoleFractions(self,
                                 Pc=100.0,
                                 MR=1.0,
                                 eps=40.0,
                                 frozen=0,
                                 frozenAtThroat=0,
                                 min_fraction=0.000005):
        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia

        molWtD, moleFracD = self.cea_obj.get_SpeciesMoleFractions(
            Pc=Pc,
            MR=MR,
            eps=eps,
            frozenAtThroat=frozenAtThroat,
            min_fraction=min_fraction)
        return molWtD, moleFracD

    def get_Chamber_H(self, Pc=100.0, MR=1.0, eps=40.0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        H = self.cea_obj.get_Chamber_H(Pc=Pc, MR=MR, eps=eps)
        return self.enthalpy_U.dval_to_uval(H)

    def get_Densities(self, Pc=100.0, MR=1.0, eps=40.0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        dList = self.cea_obj.get_Densities(Pc=Pc, MR=MR, eps=eps)

        for i, d in enumerate(dList):
            dList[i] = self.density_U.dval_to_uval(d)

        return dList

    def get_Chamber_Density(self, Pc=100.0, MR=1.0, eps=40.0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        H = self.cea_obj.get_Chamber_Density(Pc=Pc, MR=MR, eps=eps)
        return self.density_U.dval_to_uval(H)

    def get_HeatCapacities(self, Pc=100.0, MR=1.0, eps=40.0, frozen=0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        cpList = self.cea_obj.get_HeatCapacities(Pc=Pc,
                                                 MR=MR,
                                                 eps=eps,
                                                 frozen=frozen)

        for i, cp in enumerate(cpList):
            cpList[i] = self.specific_heat_U.dval_to_uval(cp)

        return cpList

    def get_Chamber_Cp(self, Pc=100.0, MR=1.0, eps=40.0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        Cp = self.cea_obj.get_Chamber_Cp(Pc=Pc, MR=MR, eps=eps)
        return self.specific_heat_U.dval_to_uval(Cp)

    def get_Throat_Isp(self, Pc=100.0, MR=1.0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        Isp = self.cea_obj.get_Throat_Isp(Pc=Pc, MR=MR)
        Isp = self.isp_U.dval_to_uval(Isp)

        return Isp

    def get_Chamber_MolWt_gamma(self, Pc=100.0, MR=1.0, eps=40.0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        return self.cea_obj.get_Chamber_MolWt_gamma(Pc=Pc, MR=MR, eps=eps)

    def get_Throat_MolWt_gamma(self, Pc=100.0, MR=1.0, eps=40.0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        return self.cea_obj.get_Throat_MolWt_gamma(Pc=Pc, MR=MR, eps=eps)

    def get_exit_MolWt_gamma(self, Pc=100.0, MR=1.0, eps=40.0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        return self.cea_obj.get_exit_MolWt_gamma(Pc=Pc, MR=MR, eps=eps)

    def get_eqratio(self, Pc=100.0, MR=1.0, eps=40.0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        return self.cea_obj.get_eqratio(Pc=Pc, MR=MR, eps=eps)

    def getMRforER(self, ERphi=None, ERr=None):
        return self.cea_obj.getMRforER(ERphi=ERphi, ERr=ERr)

    def get_description(self):
        return self.cea_obj.get_description()

    def estimate_Ambient_Isp(self,
                             Pc=100.0,
                             MR=1.0,
                             eps=40.0,
                             Pamb=14.7,
                             frozen=0,
                             frozenAtThroat=0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        Pamb = self.Pc_U.uval_to_dval(Pamb)  # convert user units to psia
        IspAmb, mode = self.cea_obj.estimate_Ambient_Isp(
            Pc=Pc,
            MR=MR,
            eps=eps,
            Pamb=Pamb,
            frozen=frozen,
            frozenAtThroat=frozenAtThroat)

        IspAmb = self.isp_U.dval_to_uval(IspAmb)

        return IspAmb, mode

    def get_PambCf(self, Pamb=14.7, Pc=100.0, MR=1.0, eps=40.0):
        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        Pamb = self.Pc_U.uval_to_dval(Pamb)  # convert user units to psia

        CFcea, CF, mode = self.cea_obj.get_PambCf(Pamb=Pamb,
                                                  Pc=Pc,
                                                  MR=MR,
                                                  eps=eps)

        return CFcea, CF, mode

    def getFrozen_PambCf(self,
                         Pamb=0.0,
                         Pc=100.0,
                         MR=1.0,
                         eps=40.0,
                         frozenAtThroat=0):
        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        Pamb = self.Pc_U.uval_to_dval(Pamb)  # convert user units to psia

        CFcea, CFfrozen, mode = self.cea_obj.getFrozen_PambCf(
            Pamb=Pamb, Pc=Pc, MR=MR, eps=eps, frozenAtThroat=frozenAtThroat)

        return CFcea, CFfrozen, mode

    def get_Chamber_Transport(self, Pc=100.0, MR=1.0, eps=40.0, frozen=0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        Cp, visc, cond, Prandtl = self.cea_obj.get_Chamber_Transport(
            Pc=Pc, MR=MR, eps=eps, frozen=frozen)

        #Cp = Cp * 8314.51 / 4184.0  # convert into BTU/lbm degR
        Cp = self.specific_heat_U.dval_to_uval(Cp)
        visc = self.viscosity_U.dval_to_uval(visc)
        cond = self.thermal_cond_U.dval_to_uval(cond)

        return Cp, visc, cond, Prandtl

    def get_Throat_Transport(self, Pc=100.0, MR=1.0, eps=40.0, frozen=0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        Cp, visc, cond, Prandtl = self.cea_obj.get_Throat_Transport(
            Pc=Pc, MR=MR, eps=eps, frozen=frozen)

        #Cp = Cp * 8314.51 / 4184.0  # convert into BTU/lbm degR
        Cp = self.specific_heat_U.dval_to_uval(Cp)
        visc = self.viscosity_U.dval_to_uval(visc)
        cond = self.thermal_cond_U.dval_to_uval(cond)

        return Cp, visc, cond, Prandtl

    def get_Exit_Transport(self, Pc=100.0, MR=1.0, eps=40.0, frozen=0):

        Pc = self.Pc_U.uval_to_dval(Pc)  # convert user units to psia
        Cp, visc, cond, Prandtl = self.cea_obj.get_Exit_Transport(
            Pc=Pc, MR=MR, eps=eps, frozen=frozen)

        Cp = Cp * 8314.51 / 4184.0  # convert into BTU/lbm degR
        Cp = self.specific_heat_U.dval_to_uval(Cp)
        visc = self.viscosity_U.dval_to_uval(visc)
        cond = self.thermal_cond_U.dval_to_uval(cond)

        return Cp, visc, cond, Prandtl
Exemplo n.º 11
0
class CoreStream:
    """
        Core stream tube of liquid bipropellant thruster.

        :param geomObj: Geometry that describes thruster
        :param effObj: Efficiencies object to hold individual efficiencies
        :param oxName: name of oxidizer (e.g. N2O4, LOX)
        :param fuelName: name of fuel (e.g. MMH, LH2)
        :param MRcore: mixture ratio of core flow (ox flow rate / fuel flow rate)
        :param Pc: psia, chamber pressure
        :param CdThroat: Cd of throat (RocketThruster object may override)
        :param Pamb: psia, ambient pressure (for example sea level is 14.7 psia)
        :param adjCstarODE: multiplier on NASA CEA code value of cstar ODE (default is 1.0)
        :param adjIspIdeal: multiplier on NASA CEA code value of Isp ODE (default is 1.0)
        :param pcentFFC: percent fuel film cooling (if > 0 then add BarrierStream)
        :param ko: entrainment constant (passed to BarrierStream object, range from 0.03 to 0.06)
        :param ignore_noz_sep: flag to force nozzle flow separation to be ignored (USE WITH CAUTION)
        :type geomObj: Geometry
        :type effObj: Efficiencies
        :type oxName: str
        :type fuelName: str
        :type MRcore: float
        :type Pc: float
        :type CdThroat: float
        :type Pamb: float
        :type adjCstarODE: float
        :type adjIspIdeal: float
        :type pcentFFC: float
        :type ko: float
        :type ignore_noz_sep: bool
        :return: CoreStream object
        :rtype: CoreStream 
        
        :ivar FvacTotal: lbf, total vacuum thrust
        :ivar FvacCore: lbf, vacuum thrust due to core stream tube
        :ivar MRthruster: total thruster mixture ratio')
        :ivar IspDel: sec, <=== thruster delivered vacuum Isp ===>
        :ivar Pexit: psia, nozzle exit pressure
        :ivar IspDel_core: sec, delivered Isp of core stream tube
        :ivar IspODF: sec, core frozen Isp
        :ivar IspODK: sec, core one dimensional kinetic Isp
        :ivar IspODE: sec, core one dimensional equilibrium Isp
        :ivar cstarERE: ft/s, delivered core cstar
        :ivar cstarODE: ft/s, core ideal cstar
        :ivar CfVacIdeal: ideal vacuum thrust coefficient
        :ivar CfVacDel: delivered vacuum thrust coefficient
        :ivar CfAmbDel: delivered ambient thrust coefficient
        :ivar wdotTot: lbm/s, total propellant flow rate (ox+fuel)
        :ivar wdotOx: lbm/s, total oxidizer flow rate
        :ivar wdotFl: lbm/s, total fuel flow rate
        :ivar TcODE: degR, ideal core gas temperature
        :ivar MWchm: g/gmole, core gas molecular weight
        :ivar gammaChm: core gas ratio of specific heats (Cp/Cv)
        
    """
    def __init__(
            self,
            geomObj=Geometry(),
            effObj=Efficiencies(),  #ERE=0.98, Noz=0.97), 
            oxName='N2O4',
            fuelName='MMH',
            MRcore=1.9,
            Pc=500,
            CdThroat=0.995,
            Pamb=0.0,
            adjCstarODE=1.0,
            adjIspIdeal=1.0,
            pcentFFC=0.0,
            ko=0.035,
            ignore_noz_sep=False):

        self.geomObj = geomObj
        self.effObj = effObj
        self.oxName = oxName
        self.fuelName = fuelName
        self.MRcore = MRcore
        self.Pc = Pc
        self.Pamb = Pamb  # ambient pressure
        self.noz_mode = ''
        self.CdThroat = CdThroat

        self.CdThroat_method = 'default'
        self.ignore_noz_sep = ignore_noz_sep  # ignore any nozzle separation

        self.adjCstarODE = adjCstarODE  # may want to adjust ODE cstar value
        self.adjIspIdeal = adjIspIdeal  # may want to adjust ODE and ODF Isp values

        # make CEA object
        self.ceaObj = CEA_Obj(oxName=oxName, fuelName=fuelName)

        # ... if pcentFFC > 0.0, then there's barrier cooling
        if pcentFFC > 0.0:
            self.add_barrier = True
        else:
            self.add_barrier = False

        # barrier might need some performance parameters from CoreStream
        self.calc_cea_perf_params()

        if self.add_barrier:
            self.barrierObj = BarrierStream(self, pcentFFC=pcentFFC, ko=ko)
        else:
            self.barrierObj = None

        self.evaluate()

        # get input descriptions and units from doc string
        self.inp_descD, self.inp_unitsD, self.is_inputD = get_desc_and_units(
            self.__doc__)

    def __call__(self, name):
        return getattr(self, name)  # let it raise exception if no name attr.

    def reset_CdThroat(self, value, method_name='RocketIsp', re_evaluate=True):
        """
        reset the value of CdThroat
        If re_evaluate is True, then call self.evaluate() after resetting the efficiency.
        """
        self.CdThroat = value
        self.CdThroat_method = method_name

        if re_evaluate:
            self.evaluate()

    def reset_attr(self, name, value, re_evaluate=True):
        """
        reset the value of any existing attribute of CoreStream instance.
        If re_evaluate is True, then call self.evaluate() after resetting the value of the attribute.
        """
        if hasattr(self, name):
            setattr(self, name, value)
        else:
            raise Exception(
                'Attempting to set un-authorized CoreStream attribute named "%s"'
                % name)

        if name in ['oxName', 'fuelName']:
            # make CEA object
            self.ceaObj = CEA_Obj(oxName=self.oxName, fuelName=self.fuelName)

        if re_evaluate:
            self.evaluate()

    def calc_cea_perf_params(self):
        """Calc basic Isp values from CEA and calc implied IspODK from current effKin value."""

        # calc ideal CEA performance parameters
        self.IspODE, self.cstarODE, self.TcODE, self.MWchm, self.gammaChm = \
                self.ceaObj.get_IvacCstrTc_ChmMwGam( Pc=self.Pc, MR=self.MRcore, eps=self.geomObj.eps)

        self.cstarODE *= self.adjCstarODE
        self.IspODE *= self.adjIspIdeal

        self.IspODF, _, _ = self.ceaObj.getFrozen_IvacCstrTc(
            Pc=self.Pc, MR=self.MRcore, eps=self.geomObj.eps)
        self.IspODF *= self.adjIspIdeal

        # use user effKin to set IspODK (or most recent update)
        self.IspODK = self.IspODE * self.effObj('Kin')
        #self.IspODK = calc_IspODK(self.ceaObj, Pc=self.Pc, eps=self.geomObj.eps,
        #                          Rthrt=self.geomObj.Rthrt,
        #                          pcentBell=self.geomObj.pcentBell,
        #                          MR=self.MRcore)

        # fraction of equilibrium kinetics obtained
        self.fracKin = (self.IspODK - self.IspODF) / (self.IspODE -
                                                      self.IspODF)

        self.Pexit = self.Pc / self.ceaObj.get_PcOvPe(
            Pc=self.Pc, MR=self.MRcore, eps=self.geomObj.eps)

        self.CfVacIdeal = 32.174 * self.IspODE / self.cstarODE

    def evaluate(self):
        """
        Assume that all efficiencies have been set, either by original user value
        or an update by an efficiency model.
        """
        self.effObj.evaluate()
        self.calc_cea_perf_params()

        # make final summary efficiencies
        effNoz = self.effObj('Noz')

        # want a Core-Only ERE in case a barrier calc is done
        effERE_core = self.effObj('ERE')
        if not self.add_barrier:  # if no barrier, user may have input FFC
            effERE_core = effERE_core * self.effObj('FFC')

        cstarERE_core = self.cstarODE * effERE_core

        effIsp_core = effNoz * effERE_core
        self.IspDel_core = effIsp_core * self.IspODE

        if self.add_barrier:
            self.barrierObj.evaluate()

            fAtc = solve_At_split(self.MRcore, self.barrierObj.MRbarrier,
                                  self.barrierObj.pcentFFC / 100.0,
                                  cstarERE_core, self.barrierObj.cstarERE_b)

            self.frac_At_core = fAtc  # core shares throat area with barrier stream

            self.frac_At_barrier = 1.0 - self.frac_At_core
            self.At_b = self.frac_At_barrier * self.geomObj.At

            self.wdotTot_b = self.Pc * self.At_b * self.CdThroat * 32.174 / self.barrierObj.cstarERE_b
            self.wdotOx_b = self.wdotTot_b * self.barrierObj.MRbarrier / (
                1.0 + self.barrierObj.MRbarrier)
            self.wdotFl_b = self.wdotTot_b - self.wdotOx_b

            self.FvacBarrier = self.wdotTot_b * self.barrierObj.IspDel_b
            self.MRthruster = self.MRcore * (1.0 -
                                             self.barrierObj.pcentFFC / 100.0)
        else:
            self.frac_At_core = 1.0  # core gets all of throat area if no barrier stream
            self.frac_At_barrier = 0.0
            self.FvacBarrier = 0.0
            self.MRthruster = self.MRcore

            self.wdotTot_b = 0.0
            self.wdotOx_b = 0.0
            self.wdotFl_b = 0.0

        self.Atcore = self.frac_At_core * self.geomObj.At

        self.wdotTot_c = self.Pc * self.Atcore * self.CdThroat * 32.174 / cstarERE_core
        self.wdotOx_c = self.wdotTot_c * self.MRcore / (1.0 + self.MRcore)
        self.wdotFl_c = self.wdotTot_c - self.wdotOx_c

        self.FvacCore = self.wdotTot_c * self.IspDel_core
        self.FvacTotal = self.FvacCore + self.FvacBarrier

        self.wdotTot = self.wdotTot_c + self.wdotTot_b
        self.wdotOx = self.wdotOx_c + self.wdotOx_b
        self.wdotFl = self.wdotFl_c + self.wdotFl_b

        if self.add_barrier:
            self.wdotFlFFC = (self.barrierObj.pcentFFC / 100.0) * self.wdotFl
            self.wdotFl_cInit = self.wdotFl - self.wdotFlFFC
            self.wdotTot_cInit = self.wdotOx + self.wdotFl_cInit
        else:
            self.wdotFlFFC = 0.0
            self.wdotFl_cInit = self.wdotFl
            self.wdotTot_cInit = self.wdotTot

        self.IspDel = self.FvacTotal / self.wdotTot

        self.IspDelPulse = self.IspDel * self.effObj('Pulse')

        if self.add_barrier:  # if barrier is analysed, assume it is in addition to user input effERE
            effFFC = self.IspDel / self.IspDel_core
            self.effObj.set_value('FFC', effFFC, value_src='barrier calc')

        self.cstarERE = self.cstarODE * self.effObj('ERE')
        #self.cstarDel = self.Pc * self.Atcore * self.CdThroat * 32.174 / self.wdotTot

        # do any nozzle ambient performance calcs here
        if self.Pamb < 0.000001:
            self.IspAmb = self.IspDel
            self.noz_mode = '(Pexit=%g psia)' % self.Pexit
        else:
            CfOvCfvacAtEsep, CfOvCfvac, Cfsep, CfiVac, CfiAmbSimple, CfVac, self.epsSep, self.Psep = \
                 sepNozzleCf(self.gammaChm, self.geomObj.eps, self.Pc, self.Pamb)
            #print('epsSep=%g, Psep=%g'%(self.epsSep, self.Psep))
            #print('========= Pexit=%g'%self.Pexit, '    Psep=%g'%self.Psep, '  epsSep=%g'%self.epsSep)

            if self.Pexit > self.Psep or self.geomObj.eps < self.epsSep or self.ignore_noz_sep:
                # if not separated, use theoretical equation for back-pressure correction
                self.IspAmb = self.IspDel - self.cstarERE * self.Pamb * self.geomObj.eps / self.Pc / 32.174
                #print('---------------->  subtraction term =', self.cstarERE * self.Pamb * self.geomObj.eps / self.Pc / 32.174)
            else:
                # if separated, use Kalt and Badal estimate of ambient thrust coefficient
                # NOTE: there are better, more modern methods available
                IspODEepsSep, CstarODE, Tc = \
                    self.ceaObj.get_IvacCstrTc(Pc=self.Pc, MR=self.MRcore, eps=self.epsSep)
                IspODEepsSep = IspODEepsSep - self.cstarERE * self.Pamb * self.epsSep / self.Pc / 32.174

                effPamb = IspODEepsSep / self.IspODE
                #print('--------------> effPamb=%g'%effPamb, '    IspODEepsSep=%g'%IspODEepsSep, '   IspODE=%g'%self.IspODE)

                self.IspAmb = effPamb * self.IspDel

            #print('========= Pamb=%g'%self.Pamb, '    IspAmb=%g'%self.IspAmb)
            # figure out mode of nozzle operation
            if self.Pexit > self.Psep or self.geomObj.eps < self.epsSep:
                if self.Pexit > self.Pamb + 0.05:
                    self.noz_mode = 'UnderExpanded (Pexit=%g)' % self.Pexit
                elif self.Pexit < self.Pamb - 0.05:
                    self.noz_mode = 'OverExpanded (Pexit=%g)' % self.Pexit
                else:
                    self.noz_mode = 'Pexit=%g' % self.Pexit
            else:
                self.noz_mode = 'Separated (Psep=%g, epsSep=%g)' % (
                    self.Psep, self.epsSep)

        self.Fambient = self.FvacTotal * self.IspAmb / self.IspDel

        self.CfVacDel = self.FvacTotal / (self.geomObj.At * self.Pc
                                          )  # includes impact of CdThroat
        self.CfAmbDel = self.Fambient / (self.geomObj.At * self.Pc
                                         )  # includes impact of CdThroat

    def summ_print(self):
        """
        print to standard output, the current state of CoreStream instance.
        """
        print(self.get_summ_str())

    def get_summ_str(self,
                     alpha_ordered=True,
                     numbered=False,
                     add_trailer=True,
                     fillchar='.',
                     max_banner=76,
                     intro_str=''):
        """
        return string of the current state of CoreStream instance.
        """

        M = self.get_model_summ_obj()

        Me = self.effObj.get_model_summ_obj()
        se = '\n' + Me.summ_str(
            alpha_ordered=False, fillchar=' ', assumptions_first=False)

        if self.add_barrier:
            Mb = self.barrierObj.get_model_summ_obj()
            sb = '\n' + Mb.summ_str(alpha_ordered=alpha_ordered,
                                    numbered=numbered,
                                    add_trailer=add_trailer,
                                    fillchar=fillchar,
                                    max_banner=max_banner,
                                    intro_str=intro_str)
        else:
            sb = ''

        return M.summ_str(alpha_ordered=alpha_ordered,
                          numbered=numbered,
                          add_trailer=add_trailer,
                          fillchar=fillchar,
                          max_banner=max_banner,
                          intro_str=intro_str) + se + sb

    def get_html_str(self, alpha_ordered=True, numbered=False, intro_str=''):
        M = self.get_model_summ_obj()

        Me = self.effObj.get_model_summ_obj()
        se = '\n' + Me.html_table_str(alpha_ordered=False,
                                      assumptions_first=False)

        if self.add_barrier:
            Mb = self.barrierObj.get_model_summ_obj()
            sb = '\n' + Mb.html_table_str(alpha_ordered=alpha_ordered,
                                          numbered=numbered,
                                          intro_str=intro_str)
        else:
            sb = ''


        return M.html_table_str( alpha_ordered=alpha_ordered, numbered=numbered, intro_str=intro_str)\
                + se + sb

    def get_model_summ_obj(self):
        """
        return ModelSummary object for current state of CoreStream instance.
        """

        M = ModelSummary('%s/%s Core Stream Tube' %
                         (self.oxName, self.fuelName))
        M.add_alt_units('psia', ['MPa', 'atm', 'bar'])
        M.add_alt_units('lbf', 'N')
        M.add_alt_units('lbm/s', 'kg/s')
        M.add_alt_units('ft/s', 'm/s')
        M.add_alt_units('sec', ['N-sec/kg', 'km/sec'])
        M.add_alt_units('degR', ['degK', 'degC', 'degF'])

        M.add_param_fmt('Pexit', '%.4f')
        M.add_param_fmt('Pc', '%.1f')

        M.add_out_category('')  # show unlabeled category 1st

        def add_param(name,
                      desc='',
                      fmt='',
                      units='',
                      value=None,
                      category=''):

            if name in self.inp_unitsD:
                units = self.inp_unitsD[name]

            if desc == '' and name in self.inp_descD:
                desc = self.inp_descD[name]

            if value is None:
                value = getattr(self, name)

            if self.is_inputD.get(name, False):
                M.add_inp_param(name, value, units, desc, fmt=fmt)
            else:
                M.add_out_param(name,
                                value,
                                units,
                                desc,
                                fmt=fmt,
                                category=category)

        for name in self.is_inputD.keys():
            if name not in ['pcentFFC', 'ko', 'geomObj', 'effObj']:
                add_param(name)

        # parameters that are NOT attributes OR are conditional
        if self.add_barrier:
            add_param('FvacBarrier',
                      units='lbf',
                      desc='vacuum thrust due to barrier stream tube')

        if self.Pamb > 14.5:
            add_param('Fambient', units='lbf', desc='total sea level thrust')
            add_param('IspAmb', units='sec', desc='delivered sea level Isp')
            M.add_out_comment('Fambient', '%s' % self.noz_mode)
            M.add_out_comment('IspAmb', '%s' % self.noz_mode)
        elif self.Pamb > 0.0:
            add_param('Fambient', units='lbf', desc='total ambient thrust')
            add_param('IspAmb', units='sec', desc='delivered ambient Isp')
            M.add_out_comment('Fambient', '%s' % self.noz_mode)
            M.add_out_comment('IspAmb', '%s' % self.noz_mode)

        if self.effObj('Pulse') < 1.0:
            add_param('IspDelPulse', units='sec', desc='delivered pulsing Isp')

        if self.CdThroat_method != 'default':
            M.add_inp_comment('CdThroat', '(%s)' % self.CdThroat_method)

        if self.add_barrier:
            add_param('wdotFlFFC',
                      units='lbm/s',
                      desc='fuel film coolant flow rate injected at perimeter',
                      category='At Injector Face')
            add_param(
                'wdotFl_cInit',
                units='lbm/s',
                desc='initial core fuel flow rate (before any entrainment)',
                category='At Injector Face')
            add_param(
                'wdotTot_cInit',
                units='lbm/s',
                desc='initial core total flow rate (before any entrainment)',
                category='At Injector Face')

            add_param(
                'wdotTot_b',
                units='lbm/s',
                desc='total barrier propellant flow rate (includes entrained)',
                category='After Entrainment')
            add_param('wdotOx_b',
                      units='lbm/s',
                      desc='barrier oxidizer flow rate (all entrained)',
                      category='After Entrainment')
            add_param('wdotFl_b',
                      units='lbm/s',
                      desc='barrier fuel flow rate (FFC + entrained)',
                      category='After Entrainment')

            add_param(
                'wdotTot_c',
                units='lbm/s',
                desc=
                'total final core propellant flow rate (injected - entrained)',
                category='After Entrainment')
            add_param(
                'wdotOx_c',
                units='lbm/s',
                desc='final core oxidizer flow rate (injected - entrained)',
                category='After Entrainment')
            add_param('wdotFl_c',
                      units='lbm/s',
                      desc='final core fuel flow rate (injected - entrained)',
                      category='After Entrainment')

        #add_param('xxx', units='xxx', desc='xxx')

        return M
Pc = 200.0
eps = 20.0

xL = []  # save data to lists
ispL = []
cstarL = []
tcL = []

for x in range(10, 100, 5):  # look at amm_dissociation from 5% to 95%
    propName = 'HYD%g' % x
    ispObj = CEA_Obj(propName=propName)

    xL.append(x)  # save percent amm_dissociation

    IspVac, Cstar, Tcomb = ispObj.get_IvacCstrTc(Pc=Pc, eps=eps)
    ispL.append(IspVac)  # save IspVac
    cstarL.append(Cstar)  # save Cstar
    tcL.append(Tcomb)  # save Tcomb

fig, ax1 = plt.subplots()
ax1.plot(xL, ispL, 'b-', label='IspVac', linewidth=4)

plt.grid(True)
plt.title(
    'Hydrazine Ideal Performance vs. Ammonia Dissociation\nPc=%g psia, Area Ratio=%g'
    % (Pc, eps))
ax1.set_xlabel('% Ammonia Dissociation')
ax1.set_ylabel('IspVac (sec)')

ax2 = ax1.twinx()
Exemplo n.º 13
0
class MR_Temperature_Limits(object):
    def __init__(self,
                 oxName='N2O4',
                 fuelName='MMH',
                 oxPcentL=None,
                 fuelPcentL=None,
                 TC_LIMIT=1000.0,
                 PcNominal=1000.0,
                 epsNominal=10.0,
                 MR_MIN=0.0,
                 MR_MAX=1000.0):  # degR, psia
        """
        For the nominal Pc and Area Ratio,
        Find minimum and maximum mixture ratio where Tcombusion >= 1000 degR
        """

        self.oxName = oxName
        self.oxPcentL = oxPcentL
        self.fuelName = fuelName
        self.fuelPcentL = fuelPcentL

        self.cea_fuelName = get_propellant_name(Name=fuelName,
                                                PcentL=fuelPcentL)
        self.cea_oxName = get_propellant_name(Name=oxName, PcentL=oxPcentL)
        self.TC_LIMIT = TC_LIMIT
        self.PcNominal = PcNominal
        self.epsNominal = epsNominal
        self.MR_MIN = MR_MIN
        self.MR_MAX = MR_MAX

        self.ispODEObj = CEA_Obj(fuelName=self.cea_fuelName,
                                 oxName=self.cea_oxName,
                                 useFastLookup=0,
                                 fac_CR=None)

        self.Stoich_MR = self.ispODEObj.getMRforER(ERphi=1.0)
        #print( 'Stoich MR =',self.Stoich_MR,'for %s/%s'%(self.cea_oxName, self.cea_fuelName) )

        self.find_min_mr()
        self.find_max_mr()

    def find_min_mr(self):
        '''Find min mr where CEA Isp is Non-Zero AND Tc >= TC_LIMIT'''

        isp = self.ispODEObj.get_Isp(Pc=self.PcNominal,
                                     MR=0.0,
                                     eps=self.epsNominal)
        if isp > 0.0:
            self.min_MR = 0.0
            isp, cstr, self.Tc_at_min_MR = self.ispODEObj.get_IvacCstrTc(
                Pc=self.PcNominal, MR=self.min_MR, eps=self.epsNominal)
            if isp > 0.1 and self.Tc_at_min_MR > self.TC_LIMIT:
                return

        mr_top = self.Stoich_MR
        mr_bot = 0.0
        for i in range(40):
            mr = (mr_top + mr_bot) / 2.0

            isp, cstr, tc = self.ispODEObj.get_IvacCstrTc(Pc=self.PcNominal,
                                                          MR=mr,
                                                          eps=self.epsNominal)
            if isp > 0.0 and tc > self.TC_LIMIT:
                mr_top = mr
            else:
                mr_bot = mr

        #print( 'Calculated Min MR = %g'%mr_top, '  Isp at Min MR =',self.ispODEObj.get_Isp( Pc=self.PcNominal, MR=mr_top, eps=eps) )
        self.min_MR = mr_top
        isp, cstr, self.Tc_at_min_MR = self.ispODEObj.get_IvacCstrTc(
            Pc=self.PcNominal, MR=mr_top, eps=self.epsNominal)

    def find_max_mr(self):
        '''Find max mr where CEA Isp is Non-Zero AND Tc >= TC_LIMIT'''
        isp = self.ispODEObj.get_Isp(Pc=self.PcNominal,
                                     MR=self.MR_MAX,
                                     eps=self.epsNominal)
        if isp > 0.0:
            self.max_MR = self.MR_MAX
            isp, cstr, self.Tc_at_max_MR = self.ispODEObj.get_IvacCstrTc(
                Pc=self.PcNominal, MR=self.max_MR, eps=self.epsNominal)
            if isp > 0.0 and self.Tc_at_max_MR > self.TC_LIMIT:
                return

        mr_top = self.MR_MAX
        mr_bot = self.Stoich_MR
        for i in range(40):
            mr = (mr_top + mr_bot) / 2.0

            isp, cstr, tc = self.ispODEObj.get_IvacCstrTc(Pc=self.PcNominal,
                                                          MR=mr,
                                                          eps=self.epsNominal)

            if isp > 0.0 and tc > self.TC_LIMIT:
                mr_bot = mr
            else:
                mr_top = mr

        #print( 'Calculated Max MR = %g'%mr_bot, '  Isp at Max MR =',self.ispODEObj.get_Isp( Pc=self.PcNominal, MR=mr_bot, eps=eps))
        self.max_MR = mr_bot
        isp, cstr, self.Tc_at_max_MR = self.ispODEObj.get_IvacCstrTc(
            Pc=self.PcNominal, MR=mr_bot, eps=self.epsNominal)

    def __str__(self):

        return '''<%s/%s, Stoich_MR=%g, Min MR=%g, Max MR=%g, Tc Left=%g R, Tc Right=%g R>'''%\
            (self.cea_oxName, self.cea_fuelName, self.Stoich_MR, self.min_MR, self.max_MR, self.Tc_at_min_MR, self.Tc_at_max_MR)
fl2.setProps(T=ox.T, Q=0)  # Set T and all liquid
fl2.printTPD()  # Print state point at given T,P

dT = fl2.T - fl.T
dH = fl2.H - fl.H

print('\nCH4 dT=%g degR, dH=%g BTU/lbm' % (dT, dH))

# ======== Build a new adjusted CEA card for the subcooled CH4 ==========
CpAve = abs(dH / dT)
card_name = makeCardForNewTemperature(ceaName='CH4',
                                      newTdegR=fl2.T,
                                      CpAve=CpAve,
                                      MolWt=16.04)
print('')
print('New Name = ' + card_name)
print('\n'.join(fuelCards[card_name]))
print('')
print('Standard CH4')
print('\n'.join(fuelCards['CH4']))

C = CEA_Obj(oxName='LOX', fuelName='CH4')
C2 = CEA_Obj(oxName='LOX', fuelName=card_name)

IspVac, Cstar, Tc = C.get_IvacCstrTc(Pc=3600, MR=3.8, eps=200)
IspVac2, Cstar2, Tc2 = C2.get_IvacCstrTc(Pc=3600, MR=3.8, eps=200)
print('')
print('       Both NBP    Common Temp')
print('IspVac  %6.1f     %6.1f sec' % (IspVac, IspVac2))
print('Cstar   %6.1f     %6.1f ft/sec' % (Cstar, Cstar2))
print('Tcomb   %6.1f     %6.1f degR' % (Tc, Tc2))
Exemplo n.º 15
0
# create system object (make sure author is correct... it's used for report)
S = ParametricSoln(subtaskName="Nozzle Area Ratio",
                   author="Charlie Taylor",
                   taskName="System Analysis",
                   constraintTolerance=0.001)

fuelName = 'LH2'
oxName = 'LOX'
pcRef = 1488.0
epsRef = 21.5
MR = 6.0

ispODEObj = CEA_Obj(fuelName=fuelName, oxName=oxName, useFastLookup=0)

ispODEref, cstrODEref, tcODEref = ispODEObj.get_IvacCstrTc(Pc=pcRef,
                                                           MR=MR,
                                                           eps=epsRef)

# add design variables to the system (these variables may be used to
# optimize the system or to create plots)
# design vars have:
#     name, value, minVal, maxVal, NSteps,  units,  description
S.addDesVars(
    ['Pc', 1500, 1400, 3000, 60, 'psia', 'Chamber Pressure'],
    ['eps', 20, 10, 60, 60, '', 'Nozzle Area Ratio'],
)

# now add any Result Variables That might be plotted
# "sysMass" is required
# result variables have:
#    name,      units,  description
Exemplo n.º 16
0
from rocketcea.cea_obj import CEA_Obj

C40 = CEA_Obj(propName='HYD40')
C100 = CEA_Obj(propName='N2H4')

I40, C40, T40 = C40.get_IvacCstrTc(Pc=200.0, eps=20.0)
I100, C100, T100 = C100.get_IvacCstrTc(Pc=200.0, eps=20.0)

print('       Isp     Cstar     Tc')
print('      (sec)   (ft/sec)  (degR)')
print('40%%    %5.1f   %6.1f   %6.1f' % (I40, C40, T40))
print('100%%   %5.1f   %6.1f   %6.1f' % (I100, C100, T100))