def make_plots(data, img_name):
  """
  make_plot(rates)
  """
  x_order = (0, 0.5, 1, 5)
  x     = array('f', x_order)
  x_er  = array('f', [k*0.01 for k in x_order]) # assumed errors
  cu    = array('f', [data[k].get_rate("cu").value for k in x_order])
  cu_er = array('f', [data[k].get_rate("cu").error for k in x_order])
  f     = array('f', [data[k].get_rate("f").value  for k in x_order])
  f_er  = array('f', [data[k].get_rate("f").error  for k in x_order])
  
  cu_graph = TGraphErrors(len(x), x, cu, x_er, cu_er)
  set_graph_values(cu_graph, "Simulated copper muon rates", "degrader thickness (mm)", "Muons per proton")
  f_graph  = TGraphErrors(len(x), x, f,  x_er, f_er)
  set_graph_values(f_graph, "Simulated free muon rates", "degrader thickness (mm)", "Muons per proton")
  
  canvas = make_canvas("Simulated muon rates (from direct counts)", n_x=2, n_y=1, resize=True)
  canvas.cd(1)
  cu_graph.Draw("ALP")
  canvas.cd(2)
  f_graph.Draw("ALP")
  canvas.Update()
  canvas.SaveAs(img_name+".svg")
  canvas.SaveAs(img_name+".png")
  sleep (5)
Exemplo n.º 2
0
def main():
  gStyle.SetOptStat(10)
  gStyle.SetOptFit(111)
  
  save_header()
  root_file = TFile(img_dir + "out.root", "RECREATE");
  for run in run_info:
    tree = init_tree_and_hists(run)
    
    fill_hists(tree)
    
    for ch in channels:
      hist = tree.hists[ch]
      
      root_file.Add(hist);
      print hist.GetTitle(), hist.GetEntries()
      can = make_canvas(hist.GetTitle(),resize=True)
      hist.Draw("E")
      fit_hist(hist)
      # print "\nChi^2/NDF {:.1f} / {}\n\n".format(hist.fit_func.GetChisquare(), hist.fit_func.GetNDF()) 
      can.Update()
      img_name = img_fmt.format(id=hist.file_id, ch=hist.ch)
      can.SaveAs(img_name+".eps")
      can.SaveAs(img_name+".svg")
      if debug:
        sleep(2)
      save_fit_info(hist)
    root_file.Write();
  root_file.Close();
Exemplo n.º 3
0
def make_and_save_count_hist(target, data, data_type, img_dir, out_root_file):
  name = "Count " if data_type == "run" else "Simulated count "
  name += "of muons decaying in "+target
  hist = make_count_hist(name, target, data)
  canvas = make_canvas(name, resize=True)
  hist.Draw()
  img_name = img_dir+"counts/"+data_type+"_muon_count_in_"+target
  canvas.SaveAs(img_name+".svg")
  canvas.SaveAs(img_name+".eps") 
  return hist   
Exemplo n.º 4
0
def save_hist_around_zero_region(data_file, img_dir, l_bound=-200, u_bound=200):
  for hist_key, hist in data_file.hists.items():
    img_name = img_dir+"zoom/{}_{}".format(data_file.short_name, hist.GetName())
    can = make_canvas(img_name)
    hist.GetXaxis().SetRangeUser(l_bound, u_bound)
    hist.Draw()
    can.Update()
    can.SaveAs(img_name+".eps")
    can.SaveAs(img_name+".svg")
    hist.GetXaxis().UnZoom() # reset the ranges to full
def draw_pretty_plots(rates):
  canvas = make_canvas("Trigger Rate", 3,2, True)
  # attach all the plots to the canvas to keep them in scope
  canvas.plots = []
  for pad_id, (file_id, data) in enumerate(rates.items(), 1):
    canvas.cd(pad_id)
    canvas.plots.append(get_plot(file_id, data))
    canvas.plots[-1].Draw("ALP")
    canvas.Update()
  # Don't let the canvas go out of scope
  return canvas
def main():
  gStyle.SetOptStat(10)
  gStyle.SetOptFit(111)
  materials = {"Cu":{"Z":29,"A":63}, "Al":{"Z":13,"A":26}}
  
  for mat, element in materials.items(): 
    hist = get_hist(**element)
    can = make_canvas(mat)
    hist.Draw()
    initial_settings = (("N",    lambda x: 100, lambda x: 0.0 , lambda x: 1e6),
                        ("#tau", lambda x: 100, lambda x: 0.0 , lambda x: 5000))
    fit_histogram(hist, "[0]*exp(-x/[1])", initial_settings, mat,)
    can.Update()
def main():
    gStyle.SetOptFit()
    res = {'data':{}, 'sec':{}}
    for f_id in file_ids:
        print "Processing", f_id
        filename = file_prefix + f_id + file_suffix
        treename = "ts" if f_id == "448" else "Scaler"
        
        tree = get_tree_from_file(treename, filename)
        print tree.filename, tree
        load_branch(tree, f_id)
        # tfile, tree, branch = get_tfile_tree_and_branch(name, **file_data)
        key = int(f_id)
        res['data'][key] = get_gain_stability_dict(tree)
        res['sec'][key] = get_sec_dict(tree)
        # tfile.Close()
    
    canvas = make_canvas("Gain Stability", 3,2, True)
    # add the histograms to the dictionary
    res.update({'gain_hist':{}, 'count_hist':{}})
    for pad_id, (file_id, data) in enumerate(res['data'].items(), 1):
        gain_hist  = get_gain_stability_hist_for_file(data, file_id)
        # count_hist = get_trigger_count_hist_for_file(data, file_id)
        # potential_hist = get_potential_trigger_count_hist_for_file(data, file_id)
        
        sec_hist = get_sec_count_hist_for_file(res['sec'][int(file_id)], file_id)
        # c1 = make_canvas('foobar', 1, 1, True)
        # c1.cd()
        # sec_hist.Draw()
        # c1.SaveAs("foobar%i.png"%file_id)
        # continue
        
        full_range = max(data.keys())[0] - min(data.keys())[0]
        # Fit the central 80%
        fit_min = full_range * 0.05
        fit_max = full_range * 0.95
        print fit_min, fit_max
        
        # gain_hist.Fit("pol0") # attempt to fit the gain with a flat function
        gain_hist.Fit("pol0", "", "", fit_min, fit_max) # attempt to fit the gain with a flat function
        
        # draw_gain_and_count_hist(gain_hist, count_hist, canvas, pad_id)
        # draw_gain_and_count_hist(gain_hist, potential_hist, canvas, pad_id)
        draw_gain_and_count_hist(gain_hist, sec_hist, canvas, pad_id)
        
        res['gain_hist'][file_id] = gain_hist
        res['count_hist'][file_id] = sec_hist
    
    canvas.SaveAs("images/gain_stability.svg")
    canvas.SaveAs("images/gain_stability.eps")
def fit_histogram(hist, func_fmt, initial_settings, func_name, fit_options="MER",img_name=""):
  func = get_func_with_named_initialised_param(func_name, hist, func_fmt, initial_settings)
  
  if img_name:
    canvas = make_canvas(img_name, resize=True)
    hist.Draw()
    hist.Fit(func, fit_options)
    canvas.Update()
    canvas.SaveAs(img_name+".eps")
    canvas.SaveAs(img_name+".svg")
  else:
    hist.Fit(func, fit_options+"N")

  hist.func = func
  hist.fit_param = get_fit_parameters(func)
def main():
  gStyle.SetOptStat(10)
  gStyle.SetOptFit(111)
  
  for run in run_info:
    tree = init_tree(run)
    
    fill_hists(tree)
    
    for hist in tree.hists.values():
      print hist.GetTitle(), hist.GetEntries()
      can = make_canvas(hist.GetTitle(),resize=True)
      hist.Draw()
      fit_hist(hist)
      print "\nChi^2/NDF {:.1f} / {}".format(hist.fit_func.GetChisquare(), hist.fit_func.GetNDF()) 
      can.Update()
      can.SaveAs("images/noise_fit_zoom.png")
      if debug:
        sleep(5)
Exemplo n.º 10
0
def fit_data(data_file, fit_type, data_type, inc_phase, inc_sin, l_bound, u_bound, img_dir="", fit_options="ILMER"):
  data_file.sum_integrals = {'f':0.0, 'cu':0.0}
  short_name = data_file.short_name
  bin_width = data_file.bin_width
  for hist_key, hist in data_file.hists.items():
    func_fmt, initial_settings = get_fit_func_and_settings(data_type, hist, fit_type, inc_phase, inc_sin)
    func_name = "{}_{}".format(short_name, hist.GetName())
    if img_dir:
      can = make_canvas(func_name, resize=True)
      hist.Draw()
      fit_histogram(hist, func_fmt, initial_settings, func_name, fit_options, l_bound, u_bound)
      can.Update()
      img_name = img_dir+"fits/"+func_name
      can.SaveAs(img_name+".eps")
      can.SaveAs(img_name+".svg")
    else:
      fit_histogram(hist, func_fmt, initial_settings, func_name, fit_options+"N")
    calculate_exp_integrals(hist, l_bound, u_bound)
    for k in data_file.sum_integrals:
      data_file.sum_integrals[k] += hist.integrals[k]