Exemplo n.º 1
0
    def __init__(self):
        # Housekeeping - Initialization, logging info and shutdown callback
        rospy.init_node("Controller")
        rospy.loginfo("Starting up the simplebot controller!")
        rospy.on_shutdown(self.shutdown)

        # Get parameters from the parameter server
        self.get_parameters()

        # Fire up subscribers for navigation data
        self.scan = LaserScan()
        rospy.Subscriber("/base_scan", LaserScan, self.get_scan)
        self.odom = Odometry()
        rospy.Subscriber("/odom", Odometry, self.get_odom)
        self.tran = tf.TransformListener()

        # Sleep for a wee bit to ensure that we've received telemetry.
        rospy.sleep(1)

        # Setting controller publishing parameters and operating rate
        self.vel = rospy.Publisher("/cmd_vel", Twist, queue_size=10)
        update_rate = rospy.Rate(10)
        # Set up motion data in for publishing
        self.motion = Twist()

        # Set up PID controller(s)
        rospy.loginfo("Setting up PID(s)")
        turn_min_output = -self.turn
        turn_max_output = self.turn
        turn_kp = 2.5
        turn_ki = 0.0
        turn_kd = 0.0
        turn_delta_time_ms = (1.0/10.0)*1000.0
        turn_direct = False
        self.turn_PID = ROSPID(0.0, turn_min_output, turn_max_output,
                               turn_kp, turn_ki, turn_kd, turn_delta_time_ms,
                               turn_direct)
        rospy.loginfo("Done with setting up PID(s)")

        # Set initial state for system and the initial distance to goal
        self.blocked = False
        self.can_leave = False
        self.min_dist_goal = self.dist_goal()

        # Variables to keep track of us being able to actually reach the goal
        # after a set number of iterations to make sure that the distance has
        # changed at least a bit since the start position
        self.goal_unreachable = False
        self.bug_boundary_count = 0
        while not rospy.is_shutdown():
            if self.goal_unreachable is False:
                if self.blocked is False:
                    if self.at_goal():
                        self.full_stop()
                    else:
                        if self.is_blocked():
                            self.blocked = True
                            self.can_leave = False
                            self.bug_start = [self.x_r, self.y_r]
                            print(self.bug_start)
                            self.bug_boundary_count = 0
                            if self.dist_goal() < self.min_dist_goal:
                                self.min_dist_goal = self.dist_goal()
                            self.be_bug()
                        else:
                            self.move_to_goal()
                else:
                    self.be_bug()
            else:
                # Do nothing. Robot being unable to reach goal has already been
                # logged when we entered this state.
                pass
            self.vel.publish(self.motion)
            update_rate.sleep()
Exemplo n.º 2
0
class Controller():

    def __init__(self):
        # Housekeeping - Initialization, logging info and shutdown callback
        rospy.init_node("Controller")
        rospy.loginfo("Starting up the simplebot controller!")
        rospy.on_shutdown(self.shutdown)

        # Get parameters from the parameter server
        self.get_parameters()

        # Fire up subscribers for navigation data
        self.scan = LaserScan()
        rospy.Subscriber("/base_scan", LaserScan, self.get_scan)
        self.odom = Odometry()
        rospy.Subscriber("/odom", Odometry, self.get_odom)
        self.tran = tf.TransformListener()

        # Sleep for a wee bit to ensure that we've received telemetry.
        rospy.sleep(1)

        # Setting controller publishing parameters and operating rate
        self.vel = rospy.Publisher("/cmd_vel", Twist, queue_size=10)
        update_rate = rospy.Rate(10)
        # Set up motion data in for publishing
        self.motion = Twist()

        # Set up PID controller(s)
        rospy.loginfo("Setting up PID(s)")
        turn_min_output = -self.turn
        turn_max_output = self.turn
        turn_kp = 2.5
        turn_ki = 0.0
        turn_kd = 0.0
        turn_delta_time_ms = (1.0/10.0)*1000.0
        turn_direct = False
        self.turn_PID = ROSPID(0.0, turn_min_output, turn_max_output,
                               turn_kp, turn_ki, turn_kd, turn_delta_time_ms,
                               turn_direct)
        rospy.loginfo("Done with setting up PID(s)")

        # Set initial state for system and the initial distance to goal
        self.blocked = False
        self.can_leave = False
        self.min_dist_goal = self.dist_goal()

        # Variables to keep track of us being able to actually reach the goal
        # after a set number of iterations to make sure that the distance has
        # changed at least a bit since the start position
        self.goal_unreachable = False
        self.bug_boundary_count = 0
        while not rospy.is_shutdown():
            if self.goal_unreachable is False:
                if self.blocked is False:
                    if self.at_goal():
                        self.full_stop()
                    else:
                        if self.is_blocked():
                            self.blocked = True
                            self.can_leave = False
                            self.bug_start = [self.x_r, self.y_r]
                            print(self.bug_start)
                            self.bug_boundary_count = 0
                            if self.dist_goal() < self.min_dist_goal:
                                self.min_dist_goal = self.dist_goal()
                            self.be_bug()
                        else:
                            self.move_to_goal()
                else:
                    self.be_bug()
            else:
                # Do nothing. Robot being unable to reach goal has already been
                # logged when we entered this state.
                pass
            self.vel.publish(self.motion)
            update_rate.sleep()

    def be_bug(self):
        # In some cases there are no valid ranges in scan. Check if this occurs
        # If it does set self.theta_goal as the travel angle..?
        no_scan = min(self.scan.ranges) == self.scan.range_max
        if no_scan:
            theta = self.theta_goal
            # Assume the worst so we want to slow down in this case
            wall_dist = self.dist
        else:
            (theta, wall_dist) = self.find_tanget()
        turn_speed = self.turn_PID.get_output_value(theta)
        self.set_turn_speed(turn_speed)
        print("turn_speed: " + str(turn_speed))

        # If we get dangerously close to the wall reduce the speed
        if wall_dist < self.dist/4.0:
            self.set_x_speed(0.3)
        elif wall_dist < self.dist:
            self.set_x_speed(0.6)
        else:
            self.set_x_speed(self.speed)

        # Check that we have been traveling for at least a minimum amount of
        # "time". If we have and arrived relatively close to the starting point
        # of the boundary we're following, give up and stop doing things.
        self.bug_boundary_count += 1
        if (self.bug_boundary_count > 100):
            d_x = self.bug_start[0] - self.x_r
            d_y = self.bug_start[1] - self.y_r
            dist_start = math.sqrt(d_x**2.0 + d_y**2.0)
            if (dist_start < 0.5):
                self.full_stop()
                self.goal_unreachable = True

        # We're allowed to leave if we reach a point which is closer to the
        # goal than previously and currently not blocked in the direction of
        # travel.
        if ((self.dist_goal() < self.min_dist_goal) and
                (not self.is_blocked())):
            self.full_stop()
            self.min_dist_goal = self.dist_goal()
            self.can_leave = True
            self.blocked = False

    def find_tanget(self):
        # DO A LOT OF STUFF
        # Find the point of discontinuity that leaves the lowest total
        # distance to goal.
        (best_index, best_angle, best_dist) = self.disc_point()
        print("best_index (disc_point):" + str(best_index))
        print("best_angle (disc_point):" + str(best_angle*180.0/math.pi))
        print("best_dist (disc_point):" + str(best_dist))
        (second_angle, second_dist) = self.second_point(best_index, best_angle)
        print("second_angle:" + str(second_angle*180.0/math.pi))
        print("second_dist:" + str(second_dist))

        # Now we need to find the vectors representing the points 1 and 2
        # 1 will be denoting the best and 2 will be denoting the second point
        # PS: This assumption is likely to be the source of "odd" behavior at
        # certain points.
        vec_1 = [best_dist*math.cos(best_angle),
                 best_dist*math.sin(best_angle)]
        vec_2 = [second_dist*math.cos(second_angle),
                 second_dist*math.sin(second_angle)]

        # Now we want to find the vector representing the wall.
        # This is given vec_wall = vec_2 - vec_1
        vec_wall = [vec_2[0] - vec_1[0], vec_2[1] - vec_1[1]]
        # Now we need the vector perpendicular to the wall
        vec_perp = [vec_2[1] - vec_1[1], -(vec_2[0] - vec_1[0])]

        # Now the distance can be found...
        vec_perp_factor = np.linalg.norm(vec_perp)
        vec_perp_norm = [vec_perp[0]/vec_perp_factor,
                         vec_perp[1]/vec_perp_factor]
        wall_dist = abs(vec_perp_norm[0]*vec_1[0] + vec_perp_norm[1]*vec_1[1])

        # Now we need to find the vector we want to travel towards
        # First find normalized wall vector!
        vec_wall_factor = np.linalg.norm(vec_wall)
        vec_wall_norm = [vec_wall[0]/vec_wall_factor,
                         vec_wall[1]/vec_wall_factor]
        # Then calculate the ideal vector to follow
        desired_x = self.dist*vec_wall_norm[0] + \
            (wall_dist - self.dist)*vec_perp_norm[0]
        desired_y = self.dist*vec_wall_norm[1] + \
            (wall_dist - self.dist)*vec_perp_norm[1]

        # Finally calculate the angle we want to follow
        desired_theta = math.atan(desired_y / desired_x)
        print("desired_theta: " + str(desired_theta*180.0/math.pi))
        return desired_theta, wall_dist

    def second_point(self, best_index, best_angle):
        # Here we want to find the point closest of two points on each side of
        # the best point. This point will then be used to calculate the slope
        # of the wall in be_bug()
        index_min_1 = best_index - 1
        angle_min_1 = best_angle - self.scan_delta
        index_plus_1 = best_index + 1
        angle_plus_1 = best_angle + self.scan_delta

        # Want to make sure we do not go out of range for the indexes
        min_index = 0
        if index_min_1 >= min_index:
            dist_min_1 = self.scan.ranges[index_min_1]
        else:
            # Assign it a large number so that it will not be chosen as the
            # second point
            dist_min_1 = 9000

        max_index = len(self.scan.ranges) - 1
        if index_plus_1 <= max_index:
            dist_plus_1 = self.scan.ranges[index_plus_1]
        else:
            # Assign it a large number so that it will not be chosen as the
            # second point
            dist_plus_1 = 9000

        if dist_min_1 < dist_plus_1:
            return angle_min_1, dist_min_1
        else:
            return angle_plus_1, dist_plus_1

    def disc_point(self):
        # Find the "best" point of discontinuity available
        # Find all disc_points outside scan range where point-1 or point+1
        # have a finite distance.
        # Then check the total goal distance for each point of discontinuity
        # and pick the one with the lowest distance as the chosen point.
        index = 1
        angle = self.scan_min + self.scan_delta
        best_index = -1
        best_angle = -1.0
        best_goal_dist = 99999
        best_dist = 99999
        while index < len(self.scan.ranges) - 1:

            # Make sure that we do not exceed the list range
            if index == 0:
                check_min_1 = False
            else:
                check_min_1 = True
            if index == len(self.scan.ranges) - 1:
                check_plus_1 = False
            else:
                check_plus_1 = True

            disc_index_min_1 = False
            disc_index_plus_1 = False

            # Check if the point is a disc point
            dist = self.scan.ranges[index]

            # If distance is equal to the maximum range we have a point that
            # may be a discontinuous point
            if dist >= self.scan.range_max:
                # Now check if this is indeed a discontinuous point
                # This happens if the range for point-1 or point+1 is not max
                disc_index_min_1 = False
                disc_index_plus_1 = False
                if check_min_1:
                    if self.scan.ranges[index - 1] < self.scan.range_max:
                        disc_index_min_1 = True
                        point_index = index - 1
                        point_angle = angle - self.scan_delta
                        point_dist = self.scan.ranges[index - 1]
                if check_plus_1:
                    if self.scan.ranges[index + 1] < self.scan.range_max:
                        disc_index_plus_1 = True
                        point_index = index + 1
                        point_angle = angle + self.scan_delta
                        point_dist = self.scan.ranges[index + 1]

                # If we found a disc point we want to check if the distance to
                # goal is lower than previously found distances
                if disc_index_min_1 or disc_index_plus_1:
                    # Calculate the total distance from point to point goal
                    x = dist * math.cos(angle)
                    y = dist * math.sin(angle)
                    dist_goal = math.sqrt((x - self.robot_goal.point.x)**2.0 +
                                          (y - self.robot_goal.point.y)**2.0)
                    dist_total = dist + dist_goal

                    # Check if this is a better point than previously found
                    if dist_total < best_goal_dist:
                        best_index = point_index
                        best_angle = point_angle
                        best_dist = point_dist
                        best_goal_dist = dist_total

            # Increment index and angle for next loop
            index += 1
            angle += self.scan_delta

        return best_index, best_angle, best_dist

    def best_point(self):
        # Loop through all scan points and find the point that minimize the
        # distance traveled towards the goal.
        # This distance would be the distance to the point plus the distance
        # from the point to the goal.
        # For ease of calculations all is done in the robots frame of reference
        best_index = 0
        best_angle = 0.0
        best_dist = 90000
        best_total_dist = 90000
        angle = self.scan_min
        index = 0
        while index < len(self.scan.ranges):
            dist_p = self.scan.ranges[index]
            if dist_p < self.scan.range_max:
                x_p = dist_p * math.cos(angle)
                y_p = dist_p * math.sin(angle)
                dist_p_goal = math.sqrt((x_p-self.robot_goal.point.x)**2.0 +
                                        (y_p-self.robot_goal.point.y)**2.0)
                # print("dist_p_goal: " + str(dist_p_goal))
                dist_total = dist_p + dist_p_goal
                if dist_total < best_total_dist:
                    best_index = index
                    best_angle = angle
                    best_dist = dist_p
                    best_total_dist = dist_total
            angle += self.scan_delta
            index += 1
        return best_index, best_angle, best_dist

    def move_to_goal(self):
        if self.goal_in_scan_range():
            dist_goal = self.dist_goal()
            if dist_goal < 1.0:
                self.set_x_speed(0.1)
            elif dist_goal < 2.0:
                self.set_x_speed(0.3)
            else:
                self.set_x_speed(self.speed)
        else:
            self.set_x_speed(0.0)
        self.set_turn_speed(self.turn_PID.get_output_value(self.theta_goal))

    def goal_in_scan_range(self):
        if (self.theta_goal < self.scan_max) and \
                (self.theta_goal > self.scan_min):
            return True
        else:
            return False

    def is_blocked(self):
        """
        Get all laser scan values that are inside the max range and convert
        them to points. If the difference in y is less than the minimum
        distance we will "collide" or at least be very close to collision and
        should return True
        Note we have to consider the delta_y sideways when the total distance
        is less than the minimum distance to a target. I think.
        This works. So I'll run with it.
        """
        angle = self.scan_min
        index = 0
        cutoff_distance = min(2.0*self.dist, self.scan.range_max/2.0)
        while angle < self.scan_max:
            dist = self.scan.ranges[index]
            if dist < cutoff_distance:
                y = dist * math.sin(angle)
                if abs(y) < self.dist:
                    return True
            angle += self.scan_delta
            index += 1
        return False

    def set_x_speed(self, speed):
        self.motion.linear.x = speed

    def set_turn_speed(self, speed):
        self.motion.angular.z = speed

    def current_theta_r(self):
        (roll, pitch, yaw) = tf.transformations.euler_from_quaternion(
            [self.odom.pose.pose.orientation.x,
             self.odom.pose.pose.orientation.y,
             self.odom.pose.pose.orientation.z,
             self.odom.pose.pose.orientation.w])
        return yaw

    def get_parameters(self):
        self.dist = rospy.get_param("/simplebot/dist", 1.2)
        self.speed = rospy.get_param("/simplebot/speed", 2.0)
        self.turn = rospy.get_param("/simplebot/turn", 5.0)
        self.x_target = rospy.get_param("x_target", 11.0)
        self.y_target = rospy.get_param("y_target", -27.0)

    def get_odom(self, odom):
        self.odom = odom
        self.x_r = self.odom.pose.pose.position.x
        self.y_r = self.odom.pose.pose.position.y
        self.goal = PointStamped()
        self.goal.header.frame_id = "/odom"
        self.goal.point.x = self.x_target
        self.goal.point.y = self.y_target
        self.goal.point.z = 0.0
        try:
            recent_time = self.tran.getLatestCommonTime("/odom", "/base_link")
            self.goal.header.stamp = recent_time
            self.robot_goal = self.tran.transformPoint("/base_link", self.goal)
            self.theta_goal = math.atan2(self.robot_goal.point.y,
                                         self.robot_goal.point.x)
        except:
            pass

    def get_scan(self, scan):
        self.scan = scan
        self.scan_min = self.scan.angle_min
        self.scan_max = self.scan.angle_max
        self.scan_delta = self.scan.angle_increment

    def dist_goal(self):
        dist = math.sqrt(self.robot_goal.point.x**2.0 +
                         self.robot_goal.point.y**2.0)
        return dist

    def at_goal(self):
        if self.dist_goal() < 0.1:
            return True
        else:
            return False

    def full_stop(self):
        self.set_x_speed(0.0)
        self.set_turn_speed(0.0)

    def shutdown(self):
        # Stop motion via default initialized Twist() and sleep before exiting
        self.vel.publish(Twist())
        rospy.sleep(1)