Exemplo n.º 1
0
def loss_fun_weighted_time(index, measurement, mesh, mesh_optimization, opt,
                           render_opt, device):
    transient = render(mesh, opt.lighting[index, :], opt.sensor[index, :],
                       opt.lighting_normal[index, :],
                       opt.sensor_normal[index, :], render_opt)
    phi = 2 * math.pi * np.random.rand(opt.sample_num)
    theta = np.arccos(np.random.rand(opt.sample_num))
    R = np.zeros([3, 3])
    rotation_matrix.R_2vect(R, np.array([0, 0, 1]),
                            opt.lighting_normal[index, :])
    direction = np.dot(
        np.vstack((np.sin(theta) * np.cos(phi), np.sin(theta) * np.sin(phi),
                   np.cos(theta))).T, R.T)
    #triangleIndexMap, distance_bin = find_triangle(mesh, direction, opt.lighting[index,:], opt.sensor[index,:], opt)
    triangleIndexMap = find_triangle(mesh, direction, opt.lighting[index, :],
                                     opt.sensor[index, :], opt)

    w = torch.ones((1, 1, 2 * opt.w_width + 1)).to(device).double()
    difference = torch.reshape(
        -2 * torch.from_numpy(measurement[index, :] - transient).to(device),
        (1, 1, opt.max_distance_bin))
    difference = torch.nn.functional.conv1d(difference, w, None, 1,
                                            opt.w_width)
    difference = torch.nn.functional.conv1d(difference, w, None, 1,
                                            opt.w_width)
    weight = torch.squeeze(difference)
    #difference = torch.squeeze(difference)

    #weight = difference.index_select(0,torch.from_numpy(distance_bin).long())

    return render_intensity_differentiable(
        mesh_optimization, direction, triangleIndexMap, weight,
        opt.lighting[index, :], opt.sensor[index, :],
        opt.lighting_normal[index, :], opt.sensor_normal[index, :], opt,
        device)
Exemplo n.º 2
0
def run_gradient_est(mesh, opt, weight):
    new_mesh = type('', (), {})()
    new_mesh.v = Variable(torch.from_numpy(np.array(mesh.v)).cuda(),
                          requires_grad=True)

    new_mesh.f = Variable(torch.from_numpy(np.array(mesh.f)).long().cuda(),
                          requires_grad=False)

    phi = 2 * math.pi * np.random.rand(opt.sample_num)
    theta = np.arccos(np.random.rand(opt.sample_num))

    R = np.zeros([3, 3])
    rotation_matrix.R_2vect(R, np.array([0, 0, 1]), opt.lighting_normal)

    direction = np.dot(
        np.vstack((np.sin(theta) * np.cos(phi), np.sin(theta) * np.sin(phi),
                   np.cos(theta))).T, R.T)
    triangleIndexMap = mesh_intersection_grad_igl.find_triangle(
        mesh, direction, opt.lighting, opt.sensor)

    angular_transient = rendering_gpu_igl.angular_sampling(
        new_mesh, direction, triangleIndexMap, opt.lighting, opt.sensor,
        opt.lighting_normal, opt.sensor_normal, opt)
    angular_transient.backward(weight.cuda())
    grad = new_mesh.v.grad.data.cpu()
    return grad
Exemplo n.º 3
0
def render_differentiable_rand_direction(mesh, mesh_optimization, lighting,
                                         sensor, lighting_normal,
                                         sensor_normal, opt, device,
                                         transient_differentiable):
    phi = 2 * math.pi * np.random.rand(opt.sample_num)
    theta = np.arccos(np.random.rand(opt.sample_num))
    R = np.zeros([3, 3])
    rotation_matrix.R_2vect(R, np.array([0, 0, 1]), lighting_normal)
    direction = np.dot(
        np.vstack((np.sin(theta) * np.cos(phi), np.sin(theta) * np.sin(phi),
                   np.cos(theta))).T, R.T)
    triangleIndexMap = find_triangle(mesh, direction, lighting, sensor)

    render_differentiable_transient(mesh_optimization, direction,
                                    triangleIndexMap, lighting, sensor,
                                    lighting_normal, sensor_normal, opt,
                                    device, transient_differentiable)
Exemplo n.º 4
0
def run_forward(mesh, opt):
    phi = 2 * math.pi * np.random.rand(opt.sample_num)
    theta = np.arccos(np.random.rand(opt.sample_num))

    R = np.zeros([3, 3])
    rotation_matrix.R_2vect(R, np.array([0, 0, 1]), opt.lighting_normal)

    direction = np.dot(
        np.vstack((np.sin(theta) * np.cos(phi), np.sin(theta) * np.sin(phi),
                   np.cos(theta))).T, R.T)

    angular_transient = rendering_igl.angular_sampling(mesh, direction,
                                                       opt.lighting,
                                                       opt.sensor,
                                                       opt.lighting_normal,
                                                       opt.sensor_normal, opt)
    return angular_transient
Exemplo n.º 5
0
def loss_func(index, measurement, mesh, mesh_optimization, opt, render_opt,
              device):
    transient = render(mesh, opt.lighting[index, :], opt.sensor[index, :],
                       opt.lighting_normal[index, :],
                       opt.sensor_normal[index, :], render_opt)
    phi = 2 * math.pi * np.random.rand(opt.sample_num)
    theta = np.arccos(np.random.rand(opt.sample_num))
    R = np.zeros([3, 3])
    rotation_matrix.R_2vect(R, np.array([0, 0, 1]),
                            opt.lighting_normal[index, :])
    direction = np.dot(
        np.vstack((np.sin(theta) * np.cos(phi), np.sin(theta) * np.sin(phi),
                   np.cos(theta))).T, R.T)
    triangleIndexMap = find_triangle(mesh, direction, opt.lighting[index, :],
                                     opt.sensor[index, :])

    transient_differentiable = render_differentiable(
        mesh_optimization, direction, triangleIndexMap, opt.lighting[index, :],
        opt.sensor[index, :], opt.lighting_normal[index, :],
        opt.sensor_normal[index, :], opt, device)

    weight = -2 * torch.from_numpy(measurement[index, :] -
                                   transient).to(device)
    return torch.mul(weight, transient_differentiable).sum()
Exemplo n.º 6
0
def render_transient(mesh, lighting, sensor, lighting_normal, sensor_normal,
                     opt, angular_transient):
    source = igl.eigen.MatrixXd(np.tile(lighting, (opt.sample_num, 1)))

    phi = 2 * math.pi * np.random.rand(opt.sample_num)
    theta = np.arccos(np.random.rand(opt.sample_num))
    R = np.zeros([3, 3])
    rotation_matrix.R_2vect(R, np.array([0, 0, 1]), lighting_normal)

    direction = np.dot(
        np.vstack((np.sin(theta) * np.cos(phi), np.sin(theta) * np.sin(phi),
                   np.cos(theta))).T, R.T)
    n = igl.eigen.MatrixXd(direction)

    barycoord = igl.eigen.MatrixXd()
    barycoord = igl.embree.line_mesh_intersection(source, n, mesh.v, mesh.f)

    fid = np.array(barycoord.col(0)).astype(int)
    idx = list(compress(range(opt.sample_num), fid != -1))

    normalMap = np.empty((opt.sample_num, 3))
    normalMap[:] = np.nan
    v11 = np.empty(opt.sample_num)
    v11[:] = np.nan
    d1 = np.empty(opt.sample_num)
    d1[:] = np.nan

    v2 = np.empty((opt.sample_num, 3))
    v2[:] = np.nan
    d2 = np.empty(opt.sample_num)
    d2[:] = np.nan
    cos_theta2 = np.empty(opt.sample_num)
    cos_theta2[:] = np.nan
    distance_bin = np.empty(opt.sample_num)
    distance_bin[:] = opt.max_distance_bin + 1
    intensity = np.empty(opt.sample_num)
    intensity[:] = np.nan

    intersection_p = igl.barycentric_to_global(mesh.v, mesh.f, barycoord)
    intersection_p = np.array(intersection_p)
    fn = np.array(mesh.fn)
    normalMap[idx, :] = fn[np.hstack(fid[idx]), :]

    v11[idx] = lighting[0] - intersection_p[idx, 0]
    d1[idx] = np.abs(np.divide(v11[idx], direction[idx, 0]))

    v2[idx, :] = sensor - intersection_p[idx, :]
    d2[idx] = np.sqrt(np.sum(v2[idx, :]**2, axis=1))
    v2[idx, :] = element_divide2_np(v2[idx, :], d2[idx])

    source = igl.eigen.MatrixXd(np.tile(sensor, (len(idx), 1)))
    n = igl.eigen.MatrixXd(-v2[idx, :])

    barycoord2 = igl.eigen.MatrixXd()
    barycoord2 = igl.embree.line_mesh_intersection(source, n, mesh.v, mesh.f)
    fid2 = np.array(barycoord2.col(0))

    idx = list(compress(idx, fid[idx] == fid2))

    cos_theta2[idx] = np.einsum('ij,ij->i', normalMap[idx, :], v2[idx, :])
    less_than_zero = list(compress(idx, cos_theta2[idx] < 0))
    if len(less_than_zero) != 0:
        cos_theta2[less_than_zero] = 0

    distance_bin[idx] = np.ceil(
        (d1[idx] + d2[idx]) / opt.distance_resolution) - 1

    inds = list(
        compress(range(opt.sample_num), distance_bin < opt.max_distance_bin))
    intensity[inds] = np.divide(cos_theta2[inds], d2[inds]**2)

    u = np.unique(distance_bin[inds])

    for x in u:
        angular_transient[x.astype(int)] += sum(intensity[distance_bin == x])

    angular_transient *= 2 * math.pi
    angular_transient /= opt.sample_num
Exemplo n.º 7
0
f = 0.5
z = 1.8

sensor = np.array([f, 0, z])
lighting = np.array([-f, 0, z])

sensor_normal = np.array([0, 0, -1])
lighting_normal = np.array([0, 0, -1])

opt = OPT()

phi = 2 * math.pi * np.random.rand(opt.sample_num)
theta = np.arccos(np.random.rand(opt.sample_num))

R = np.zeros([3, 3])
rotation_matrix.R_2vect(R, np.array([0, 0, 1]), lighting_normal)

direction = np.dot(
    np.vstack((np.sin(theta) * np.cos(phi), np.sin(theta) * np.sin(phi),
               np.cos(theta))).T, R.T)

triangleIndexMap = mesh_intersection_grad_igl.find_triangle(
    mesh, direction, lighting, sensor)

mesh.v = Variable(torch.from_numpy(np.array(mesh.v)), requires_grad=True)
mesh.f = Variable(torch.from_numpy(np.array(mesh.f)).long())

tic = time.time()
angular_transient = rendering_grad_igl.angular_sampling(
    mesh, direction, triangleIndexMap, lighting, sensor, lighting_normal,
    sensor_normal, opt)
Exemplo n.º 8
0
#meas = np.array([.002, 0, .99])
#meas = np.array([0.002, 0.0018, .99])
#meas = np.array([0.000, 0.0018, .99])
#meas = np.array([-0.0012, 0.0018, .99])
#meas = np.array([-0.0014, 0.0014, .99])
#meas = np.array([-0.0018, 0.0014, .99])
#meas = np.array([-0.0022, 0.0010, .99])
#meas = np.array([-.003, 0.0010, 0.99])
#meas = np.array([-.004, 0.0009, 0.99])
meas = np.array([.01, 0.00, .99])


def CPP(matr):
    pieces = [[], [], []]
    for (a, b), val in np.ndenumerate(matr):
        pieces[a].append(int(val * 1000000000))
    body = ", \n".join("%i, %i, %i" % tuple(p) for p in pieces)
    return "<%s, 1000000000>" % body


def I3():
    return np.matrix([[1., 0, 0], [0, 1., 0], [0, 0, 1.]])


m = I3()
r.R_2vect(m, orig, meas)

print orig, "->", meas
print m
print CPP(m)