Exemplo n.º 1
0
    def fit(self, X, normalise=True):
        """
        Construct the random projection forest for points in X.

        Arguments:
        - np.float64 array X [n_points, dim]
        - optional boolean normalise: whether to normalise X. If True,
                                      a copy of X will be made and
                                      normalised.

        Returns:
        - object self
        """

        if X.shape[0] < 1 or X.shape[1] < 1:
            raise Exception('You must supply a valid 2D array.')

        self.dim = X.shape[1]

        if normalise:
            self._X = X / np.linalg.norm(X, axis=1)[:, np.newaxis]
        else:
            self._X = X

        # Reset the trees list in case of repeated calls to fit
        self.trees = []

        for _ in range(self.no_trees):
            tree = Tree(self.leaf_size, self.dim)
            tree.make_tree(self._X)
            self.trees.append(tree)

        return self
Exemplo n.º 2
0
    def fit(self, X, normalise=True):
        """
        Construct the random projection forest for points in X.

        Arguments:
        - np.float64 array X [n_points, dim]
        - optional boolean normalise: whether to normalise X. If True,
                                      a copy of X will be made and
                                      normalised.

        Returns:
        - object self
        """

        if X.shape[0] < 1 or X.shape[1] < 1:
            raise Exception("You must supply a valid 2D array.")

        self.dim = X.shape[1]

        if normalise:
            self._X = X / np.linalg.norm(X, axis=1)[:, np.newaxis]
        else:
            self._X = X

        # Reset the trees list in case of repeated calls to fit
        self.trees = []

        for _ in range(self.no_trees):
            tree = Tree(self.leaf_size, self.dim)
            tree.make_tree(self._X)
            self.trees.append(tree)

        return self
Exemplo n.º 3
0
    def fit(self, X, normalise=True):
        """
        Construct the random projection forest for points in X.

        Arguments:
        - np.float64 array X [n_points, dim]
        - optional boolean normalise: whether to normalise X. If True,
                                      a copy of X will be made and
                                      normalised.
        """

        if self._is_constructed():
            raise Exception('Tree has already been created.')

        if X.shape[0] < 1 or X.shape[1] < 1:
            raise Exception('You must supply a valid 2D array.')

        self.dim = X.shape[1]

        if normalise:
            self._X = X / np.linalg.norm(X, axis=1)[:, np.newaxis]
        else:
            self._X = X

        for _ in range(self.no_trees):
            tree = Tree(self.leaf_size, self.dim)
            tree.make_tree(self._X)
            self.trees.append(tree)
Exemplo n.º 4
0
    def __setstate__(self, state):

        self.dim = state['dim']
        self.leaf_size = state['leaf_size']
        self.no_trees = state['no_trees']
        self._X = state['X']

        self.trees = []

        for tree_state in state['trees']:
            tree = Tree(self.leaf_size, self.dim)
            tree.deserialize(tree_state)
            self.trees.append(tree)
Exemplo n.º 5
0
    def __setstate__(self, state):

        self.dim = state['dim']
        self.leaf_size = state['leaf_size']
        self.no_trees = state['no_trees']
        self._X = state['X']

        self.trees = []

        for tree_state in state['trees']:
            tree = Tree(self.leaf_size, self.dim)
            tree.deserialize(tree_state)
            self.trees.append(tree)
Exemplo n.º 6
0
    def __setstate__(self, state):

        self.dim = state["dim"]
        self.leaf_size = state["leaf_size"]
        self.no_trees = state["no_trees"]
        self._X = state["X"]

        self.trees = []

        for tree_state in state["trees"]:
            tree = Tree(self.leaf_size, self.dim)
            tree.deserialize(tree_state, state.get("serialization_version", 1))
            self.trees.append(tree)

        # Make sure that when serialized again it gets the right serialization version
        self.serialization_version = SERIALIZATION_VERSION
Exemplo n.º 7
0
    def __setstate__(self, state):

        self.dim = state['dim']
        self.leaf_size = state['leaf_size']
        self.no_trees = state['no_trees']
        self._X = state['X']

        self.trees = []

        for tree_state in state['trees']:
            tree = Tree(self.leaf_size, self.dim)
            tree.deserialize(tree_state, state.get('serialization_version', 1))
            self.trees.append(tree)

        # Make sure that when serialized again it gets the right serialization version
        self.serialization_version = SERIALIZATION_VERSION