Exemplo n.º 1
0
# aes_string: set the axis labels and what we're plotting
# opts: sets thickness of the lines
#   note the use of **{} to allow setting "legend.key.size" as a keyword
# scale_colour_manual: associate color datasets with actual colors and names
# geom_point and geom_line: thicker points and lines
# scale_linetype_manual: associate perf types with linetypes
for col_i, yscale in enumerate(['log', 'linear']):
    vp = grid.viewport(**{'layout.pos.col': col_i + 1, 'layout.pos.row': 1})
    pp = ggplot2.ggplot(df) + \
        ggplot2.aes_string(x='variable', y='Performance', color='color',
                           shape='PerfType', linetype='PerfType') + \
        ggplot2.ggtitle('Performance vs. Color') + \
        ggplot2.theme(**{'legend.key.size' : ro.r.unit(1.4, "lines") } ) + \
        ggplot2.scale_colour_manual("Color",
                                    values=colormap,
                                    breaks=colormap.names,
                                    labels=[elt[1] for elt in
                                            colormap_labels]) + \
        ggplot2.geom_point(size=3) + \
        ggplot2.scale_linetype_manual(values=linemap) + \
        ggplot2.geom_line(size=1.5)

    # custom y-axis lines: major lines ("breaks") are every 10^n; 9
    #   minor lines ("minor_breaks") between major lines
    if (yscale == 'log'):
        pp = pp + \
            ggplot2.scale_y_log10(breaks = ro.r("10^(%d:%d)" % (gflops_range[0],
                                                                gflops_range[1])),
                                  minor_breaks =
                                  ro.r("rep(10^(%d:%d), each=9) * rep(1:9, %d)" %
                                       (gflops_range[0] - 1, gflops_range[1],
Exemplo n.º 2
0
# opts: set the title and the thickness of the lines
#   note the use of **{} to allow setting "legend.key.size" as a keyword
# scale_colour_manual: associate color datasets with actual colors and names
# geom_point and geom_line: thicker points and lines
# scale_linetype_manual: associate perf types with linetypes
for col_i, yscale in enumerate(['log', 'linear']): 
  vp = grid.viewport(**{'layout.pos.col':col_i+1, 'layout.pos.row': 1})
  pp = ggplot2.ggplot(df) + \
      ggplot2.aes_string(x='Date', y='Performance', color='color', 
                         shape='PerfType', linetype='PerfType') + \
      ggplot2.opts(**{'title' : 
                      'Performance vs. Color',
                      'legend.key.size' : ro.r.unit(1.4, "lines") } ) + \
      ggplot2.scale_colour_manual("Color", 
                                  values=colormap,
                                  breaks=colormap.names,
                                  labels=[elt[1] for elt in 
                                          colormap_labels]) + \
      ggplot2.geom_point(size=3) + \
      ggplot2.scale_linetype_manual(values=linemap) + \
      ggplot2.geom_line(size=1.5)

  # custom y-axis lines: major lines ("breaks") are every 10^n; 9
  #   minor lines ("minor_breaks") between major lines
  if (yscale == 'log'):
    pp = pp + \
        ggplot2.scale_y_log10(breaks = ro.r("10^(%d:%d)" % (gflops_range[0], 
                                                            gflops_range[1])),
                              minor_breaks = 
                              ro.r("rep(10^(%d:%d), each=9) * rep(1:9, %d)" %
                                   (gflops_range[0] - 1, gflops_range[1], 
def plot_volcano_with_r(
    data,
    xlabel='Estimated effect (change in H/L ratio)',
    title='',
    max_labels=20,
    color_background='#737373',
    color_significant='#252525',
    color_significant_muted='#252525',
    label_only_large_fc=False,
    special_labels=None,
    special_palette=None,
    base_size=12,
    label_size=3,
    x='logFC',
    y='neg_log10_p_adjust',
    special_labels_mode='all',
    xlim=None,
    skip_labels=None,
    nudges=None,
):

    r_data, r_like_data = transform_data_for_ggplot(
        data,
        label_only_large_fc=label_only_large_fc,
        special_labels=special_labels,
        max_labels=max_labels,
        special_labels_mode=special_labels_mode,
        skip_labels=skip_labels,
        nudges=nudges)

    plot = r_ggplot2.ggplot(r_data)
    plot += r_ggplot2.theme_minimal(base_size=base_size)
    plot += r_ggplot2.theme(
        **{
            'panel.grid.major':
            r_ggplot2.element_blank(),
            'panel.grid.minor':
            r_ggplot2.element_blank(),
            'panel.border':
            r_ggplot2.element_rect(fill=robjects.rinterface.NA, color="black")
        })
    plot += r_ggplot2.theme(
        text=r_ggplot2.element_text(family='Helvetica', face='plain'))
    plot += r_ggplot2.theme(
        **{
            'plot.title': r_ggplot2.element_text(hjust=0.5),
            #                               'axis.title.y': r_ggplot2.element_text((t = 0, r = 20, b = 0, l = 0)),
        })

    aes_points = r_ggplot2.aes_string(x=x, y=y, color='group')
    scale_points = r_ggplot2.scale_colour_manual(
        aes_points,
        values=r_label_palette(
            r_like_data,
            special_palette,
            color_background=color_background,
            color_significant=color_significant,
            color_significant_muted=color_significant_muted))

    plot += aes_points
    plot += scale_points

    if xlim is not None:
        plot += r_ggplot2.scale_x_continuous(
            labels=r_custom.formatterFunTwoDigits, limits=robjects.r.c(*xlim))
    else:
        plot += r_ggplot2.scale_x_continuous(
            labels=r_custom.formatterFunTwoDigits)

    plot += r_ggplot2.scale_y_continuous(labels=r_custom.formatterFunOneDigit)

    plot += r_ggplot2.geom_hline(
        yintercept=float(-np.log10(FDR_THRESHOLD_RESPONSE)),
        color='#BDBDBD',
        alpha=.3)
    plot += r_ggplot2.geom_vline(xintercept=float(FC_THRESHOLD_RESPONSE),
                                 color='#BDBDBD',
                                 alpha=.3)
    plot += r_ggplot2.geom_vline(xintercept=-float(FC_THRESHOLD_RESPONSE),
                                 color='#BDBDBD',
                                 alpha=.3)

    plot += r_ggplot2.geom_point(**{'show.legend': False})

    aes_text = r_ggplot2.aes_string(label='label')
    plot += aes_text
    plot += r_ggrepel.geom_text_repel(
        aes_text,
        nudge_x=r_dollar(r_data, 'nudgex'),
        nudge_y=r_dollar(r_data, 'nudgey'),
        size=label_size,
        family='Helvetica',
        **{
            'show.legend': False,
            'point.padding': 0.25,
            'min.segment.length': 0,
            #'max.iter':0,
            'segment.color': '#BDBDBD'
        },
    )

    plot += r_ggplot2.labs(x=xlabel,
                           y='Adjusted p value (-log10)',
                           title=title)

    plot.plot()
Exemplo n.º 4
0
                               group='variable',
                               colour='variable',
                               shape='variable',
                               linetype='variable')
line = ggplot2.geom_line()
point = ggplot2.geom_point()
vert_line_onset = ggplot2.geom_vline(xintercept=-1.5,
                                     linetype=2,
                                     colour="#999999")
vert_line_exhaust = ggplot2.geom_vline(xintercept=5.5,
                                       linetype=2,
                                       colour="#999999")
vert_line_exhaust_FL = ggplot2.geom_vline(xintercept=3.5,
                                          linetype=2,
                                          colour="#999999")
colors = ggplot2.scale_colour_manual(values=robjects.r.palette_lines)
hollow = ggplot2.scale_shape_manual(
    values=robjects.r('c(16,17,15,18,6,7,9,3)'))
xlab = ggplot2.labs(x="Months Since First UI Check")
loc_default = robjects.r('c(1,0)')
legend_f = lambda loc=loc_default: ggplot2.theme(**{
    'legend.position': loc,
    'legend.justification': loc
})
ggsave = lambda filename, plot: robjects.r.ggsave(
    filename="../out/" + filename + ".pdf", plot=plot, width=6, height=4)

colors_alt = ggplot2.scale_colour_manual(values=robjects.r.palette_lines[1])
shape_alt = ggplot2.scale_shape_manual(values=17)

ggplot2_env = robjects.baseenv['as.environment']('package:ggplot2')
Exemplo n.º 5
0
#alternatives that tried and failed
#base_plot = lambda gr_name = 'variable': ggplot2.aes_string(x='x', y='value',group=gr_name,colour=gr_name, shape = gr_name)
#colors = ggplot2.scale_colour_manual(values=robjects.r.palette_lines, name = ltitle)

pandas2ri.activate() 
#set up basic, repetitive plot features
base_plot =  ggplot2.aes_string(x='x', y='value',group='variable',colour='variable', shape = 'variable')
line = ggplot2.geom_line()
point = ggplot2.geom_point() 
bar = ggplot2.geom_bar(stat="identity")
vert_line_onset = ggplot2.geom_vline(xintercept=-1, linetype=2, colour="red", alpha=0.25)           
vert_line_exhaust = ggplot2.geom_vline(xintercept=5, linetype=2, colour="red", alpha=0.25)  
ltitle = "crazy"         
ltitle_default = 'Variable'
#colors = lambda ltitle = ltitle_default: ggplot2.scale_colour_manual(values=robjects.r.palette_lines, name = ltitle)
colors = ggplot2.scale_colour_manual(values=robjects.r.palette_lines)
legend_t_c = lambda ltitle = ltitle_default: ggplot2.scale_color_discrete(name = ltitle) 
legend_t_s = lambda ltitle = ltitle_default: ggplot2.scale_shape_discrete(name = ltitle)
loc_default = robjects.r('c(1,0)')
legend_f  = lambda loc = loc_default: ggplot2.theme(**{'legend.position':loc, 'legend.justification':loc})
ggsave = lambda filename, plot: robjects.r.ggsave(filename=out_path + filename + ".pdf", plot=plot, width = 6, height = 4)

colors_alt = ggplot2.scale_colour_manual(values=robjects.r.palette_lines[1])
shape_alt = ggplot2.scale_shape_manual(values=17)

#create a new function straight from the R enviornment
#xx in principle it should be possible to load  class using what's already been imported 
#above, but I'm not going to worry about that for now
ggplot2_env = robjects.baseenv['as.environment']('package:ggplot2')

class GBaseObject(robjects.RObject):
Exemplo n.º 6
0
        p.save('./plots/taxi_pickups%02i.png' % i, width=4, height=4.5)
        
# Create animated .gif of pickups by hour
import imageio

file_names = sorted((fn for fn in os.listdir('./plots') if fn.startswith('taxi_pickups')))
file_names = ['plots/' + s for s in file_names]
images = []
for filename in file_names:
    images.append(imageio.imread(filename))
imageio.mimsave('./plots/pickups_movie.gif', images, duration=0.4)

# total pickups by date, color
p1 = ggplot2.ggplot(pandas2ri.py2ri(date_avgs)) + \
ggplot2.aes_string(x='date', y='total_pickups', color='type') + \
ggplot2.scale_colour_manual(values = robjects.StrVector(['green', 'yellow'])) + \
ggplot2.geom_line() + \
ggplot2.theme(legend_position='bottom') + \
ggplot2.labs(y='Total Pickups', x='Date', title='Total Pickups by Date')
p1.save('./plots/pickups_by_date.png', width=6, height=5)

# average fare and tip by date, color
p2 = ggplot2.ggplot(pandas2ri.py2ri(date_avgs)) + \
ggplot2.aes_string(x='date', y='fare_amount', color='type') + \
ggplot2.scale_colour_manual(values = robjects.StrVector(['green', 'yellow'])) + \
ggplot2.geom_line() + \
ggplot2.theme(legend_position='bottom') + \
ggplot2.labs(y='Average Fare ($)', x='Date', title='Average Fare by Date')
p2.save('./plots/fares_by_date.png', width=6, height=5)

p3 = ggplot2.ggplot(pandas2ri.py2ri(date_avgs)) + \