Exemplo n.º 1
0
def interval(locus_table, interval_table, intervals, loci, boxplot = True):
    qry = get_interval_query(intervals, loci, locus_table, interval_table)
    frame = robjects.r('''data <- dbGetQuery(con, {})'''.format(qry))
    # because we're sorting by interval, which is a factor, we need to
    # explicitly re-sort the data by the first integer value
    # of the interval.  This is a bit cumbersome, because sorting
    # in R is less than pleasant.
    sort_string = '''data$interval <- factor(data$interval, {})'''.format(order_intervals(frame[1]))
    robjects.r(sort_string)
    gg_frame = ggplot2.ggplot(robjects.r('''data'''))
    if boxplot:
        plot = gg_frame + ggplot2.aes_string(x = 'interval', y = 'pi') + \
                ggplot2.geom_boxplot(**{
                    'outlier.size':0, 
                    'alpha':0.3
                    }
                ) + \
                ggplot2.geom_jitter(ggplot2.aes_string(color = 'locus'), size = 3, \
                alpha = 0.6, position=ggplot2.position_jitter(width=0.25)) + \
                ggplot2.scale_y_continuous('phylogenetic informativeness') + \
                ggplot2.scale_x_discrete('interval (years ago)')

    else:
        plot = gg_frame + ggplot2.aes_string(x = 'interval', y = 'pi',
                fill='locus') + ggplot2.geom_bar() + \
                ggplot2.facet_wrap(robjects.Formula('~ locus')) + \
                ggplot2.opts(**{
                    'axis.text.x':ggplot2.theme_text(angle = -90,  hjust = 0),
                    'legend.position':'none'
                    }) + \
                ggplot2.scale_y_continuous('phylogenetic informativeness') + \
                ggplot2.scale_x_discrete('interval (years ago)')
    return plot
Exemplo n.º 2
0
def ggplot2_options():
    return ggplot2.opts(
        **{
            'axis.title.x':
            ggplot2.theme_blank(),
            'axis.title.y':
            ggplot2.theme_text(
                family='serif', face='bold', size=15, angle=90, vjust=0.2),
            'axis.text.x':
            ggplot2.theme_text(family='serif', size=15),
            'axis.text.y':
            ggplot2.theme_text(family='serif', size=15),
            'legend.title':
            ggplot2.theme_text(family='serif', face='bold', size=15),
            'legend.text':
            ggplot2.theme_text(family='serif', size=15),
            'aspect.ratio':
            0.6180339888,
        })
Exemplo n.º 3
0
def mem_usage_graph(cfg):
    r = robjects.r
    varis = []
    langs = []
    probs = []
    mems = []
    for var in cfg.variations:
        for lang in cfg.languages:
            for prob in cfg.problems:
                mem_filename = get_mem_output(lang, prob, var)
                with open(mem_filename, 'r') as mem_file:
                    mem = mem_file.readline()
                    mems.append(float(mem))
                varis.append(pretty_varis[var])
                langs.append(pretty_langs[lang])
                probs.append(prob)

    # memory usage is a simple histogram with all information in one graph.
    r.pdf('bargraph-memusage.pdf', height=pdf_height(), width=pdf_width())
    df = robjects.DataFrame({
        'Language': StrVector(langs),
        'Problem': StrVector(probs),
        'Variation': StrVector(varis),
        'Mem': FloatVector(mems)
    })

    gp = ggplot2.ggplot(df)

    # we rotate the x labels to make sure they don't overlap
    pp = gp  +\
        ggplot2.opts (**{'axis.text.x': ggplot2.theme_text (angle = 90, hjust=1)}) + \
        ggplot2.aes_string (x='Problem', y='Mem', fill='Language') + \
        ggplot2.geom_bar (position='dodge', stat='identity') + \
        ggplot2.facet_wrap ('Variation') + \
        ggplot2_options () + \
        ggplot2_colors () + \
        robjects.r('scale_x_discrete(limits=c("randmat", "thresh", "winnow", "outer", "product", "chain"))') +\
        robjects.r('ylab("Memory usage (in bytes)")')# + \

    pp.plot()
    r['dev.off']()
Exemplo n.º 4
0
def mem_usage_graph (cfg):
  r = robjects.r
  varis = []
  langs = []
  probs = []
  mems  = []
  for var in cfg.variations:
    for lang in cfg.languages:
      for prob in cfg.problems:
        mem_filename = get_mem_output (lang, prob, var)
        with open (mem_filename, 'r') as mem_file:
          mem = mem_file.readline()
          mems.append (float (mem))
        varis.append (pretty_varis [var])
        langs.append (pretty_langs [lang])
        probs.append (prob)

  # memory usage is a simple histogram with all information in one graph.
  r.pdf ('bargraph-memusage.pdf', height=pdf_height (), width=pdf_width ())
  df = robjects.DataFrame({'Language': StrVector (langs),
                           'Problem': StrVector (probs),
                           'Variation' : StrVector (varis),
                           'Mem' : FloatVector (mems)
                           })

  gp = ggplot2.ggplot (df)

  # we rotate the x labels to make sure they don't overlap
  pp = gp  +\
      ggplot2.opts (**{'axis.text.x': ggplot2.theme_text (angle = 90, hjust=1)}) + \
      ggplot2.aes_string (x='Problem', y='Mem', fill='Language') + \
      ggplot2.geom_bar (position='dodge', stat='identity') + \
      ggplot2.facet_wrap ('Variation') + \
      ggplot2_options () + \
      ggplot2_colors () + \
      robjects.r('scale_x_discrete(limits=c("randmat", "thresh", "winnow", "outer", "product", "chain"))') +\
      robjects.r('ylab("Memory usage (in bytes)")')# + \

  pp.plot ()
  r['dev.off']()
Exemplo n.º 5
0
def line_plot (cfg, var, control, change_name, changing, selector, base_selector, basis):
  speedups = []
  thrds = []
  changes = []
  lowers = []
  uppers = []

  for n in cfg.threads:
    probs.append ('ideal')
    langs.append ('ideal')
    speedups.append (n)
    thrds.append (n)
    changes.append ('ideal')
    lowers.append (n)
    uppers.append (n)
    
  for c in changing:
    sel  = selector (c)

    # sequential base
    base = FloatVector (base_selector(c))
    # base with p = 1
    base_p1 = FloatVector (sel(1))
    # use fastest sequential program
    if basis == 'fastest' and mean (base_p1) < mean(base):
      base = base_p1
    elif basis == 'seq':
      pass
    elif basis == 'p1':
      base = base_p1
      
    for n in cfg.threads:
      ntimes = FloatVector (sel(n))

      # ratio confidence interval
      labels = ['Base'] * r.length(base)[0] + ['N']*r.length (ntimes)[0]
      df = DataFrame ({'Times': base + ntimes, 
                       'Type': StrVector(labels)})
      ratio_test = r['pairwiseCI'] (r('Times ~ Type'), data=df,
                                    control='N',
                                    method='Param.ratio',
                                    **{'var.equal': False,
                                    'conf.level': 0.999})[0][0]

      lowers.append (ratio_test[1][0])
      uppers.append (ratio_test[2][0])

      mn = mean (ntimes)      
      speedups.append (mean(base) / mn)
      # plot slowdowns
      #speedups.append (-mn/base)#(base / mn)
      thrds.append (n)
      if change_name == 'Language':
        changes.append (pretty_langs [c])
      else:
        changes.append (c)

  df = DataFrame ({'Speedup': FloatVector (speedups),
                   'Threads': IntVector (thrds),
                   change_name: StrVector (changes),
                   'Lower': FloatVector (lowers),
                   'Upper': FloatVector (uppers)
                   })
  ideal_changing = ['ideal']
  if change_name == 'Language':
    ideal_changing.extend ([pretty_langs [c] for c in changing])
  else:
    ideal_changing.extend (changing)

  legendVec = IntVector (range (len (ideal_changing)))
  legendVec.names = StrVector (ideal_changing)

  gg = ggplot2.ggplot (df)

  limits = ggplot2.aes (ymax = 'Upper', ymin = 'Lower')
  dodge = ggplot2.position_dodge (width=0.9)

  pp = gg + \
      ggplot2.geom_line() + ggplot2.geom_point(size=3) +\
      ggplot2.aes_string(x='Threads', y='Speedup', 
                         group=change_name, color=change_name, 
                         shape=change_name) + \
      ggplot2.scale_shape_manual(values=legendVec) + \
      ggplot2.geom_errorbar (limits, width=0.25) + \
      ggplot2_options () + \
      ggplot2_colors () + \
      ggplot2.opts (**{'axis.title.x' : ggplot2.theme_text(family = 'serif', face = 'bold', size = 15, vjust=-0.2)}) + \
      robjects.r('ylab("Speedup")') + \
      robjects.r('xlab("Cores")')

      # ggplot2.xlim (min(threads), max(threads)) + ggplot2.ylim(min(threads), max(threads)) +\
  pp.plot()

  r['dev.off']()
Exemplo n.º 6
0
def as_dataframe (cfg, results, basis):
  r = robjects.r
  varis = []
  langs = []
  probs = []
  times = []
  threads = []

  # speedups, with upper and lower bounds below
  speedups = [] 
  speedup_lowers = []
  speedup_uppers = []

  ses = [] # standard errors
  mems = [] # memory usage

  langs_ideal = list (cfg.languages)
  langs_ideal.append ('ideal')

  probs_ideal = list (cfg.problems)
  probs_ideal.append ('ideal')

  for var in cfg.variations:
    for lang in langs_ideal: # cfg.languages:
      for prob in probs_ideal: # cfg.problems:
        for thread in cfg.threads:

          if lang == 'ideal' and prob == 'ideal':
            continue
          elif lang == 'ideal' or prob == 'ideal':
            varis.append (var)
            langs.append (pretty_langs[lang])
            probs.append (prob)
            threads.append (thread)
            speedups.append (thread)
            speedup_lowers.append (thread)
            speedup_uppers.append (thread)
            times.append (0)
            ses.append(0)
            mems.append (0)
            continue

          varis.append (var) # pretty_varis [var])
          langs.append (pretty_langs [lang])
          probs.append (prob)
          threads.append (thread)
          
          if var.find('seq') >= 0:
            thread = cfg.threads[-1]

          vals = FloatVector (results[thread][prob][var][lang][0])
          time = mean (vals)
          times.append (time)

          #
          # time confidence interval
          #
          t_result = r['t.test'] (FloatVector(vals), 
                                  **{" conf.level": 0.999}).rx ('conf.int')[0]
          ses.append ((t_result[1] - t_result[0])/2)

          #
          # memory usage
          #
          mem_filename = get_mem_output (lang, prob, var)
          with open (mem_filename, 'r') as mem_file:
            mem = mem_file.readline()
            mems.append (float (mem))

          # we include dummy data for the sequential case to avoid the 
          # speedup calculation below
          if var.find('seq') >= 0:
            speedups.append (1)
            speedup_lowers.append (1)
            speedup_uppers.append (1)
            continue
            
          #
          # speedup values and confidence intervals
          #
          seq_vals = results[cfg.threads[-1]][prob][var.replace ('par', 'seq')][lang][0]

          # sequential base
          base = FloatVector (seq_vals)
          # base with p = 1
          base_p1 = FloatVector (results[1][prob][var][lang][0])
          # use fastest sequential program
          if basis == 'fastest' and mean (base_p1) < mean(base):
            base = base_p1
          elif basis == 'seq':
            pass
          elif basis == 'p1':
            base = base_p1
      

          labels = ['Base'] * r.length(base)[0] + ['N']*r.length (vals)[0]
          df = DataFrame ({'Times': base + vals, 
                           'Type': StrVector(labels)})
          ratio_test = r['pairwiseCI'] (r('Times ~ Type'), data=df,
                                        control='N',
                                        method='Param.ratio',
                                        **{'var.equal': False})[0][0]

          speedups.append (mean(base) / time)
          speedup_lowers.append (ratio_test[1][0])
          speedup_uppers.append (ratio_test[2][0])

  df = robjects.DataFrame({'Language': StrVector (langs),
                           'Problem': StrVector (probs),
                           'Variation' : StrVector (varis),
                           'Threads': IntVector (threads),
                           
                           'Time': FloatVector (times),
                           'SE': FloatVector (ses),
                           
                           'Speedup': FloatVector (speedups),
                           'SpeedupLower': FloatVector (speedup_lowers),
                           'SpeedupUpper': FloatVector (speedup_uppers),
                           
                           'Mem' : FloatVector (mems)
                           })


  r.assign ('df', df)

  r ('save (df, file="performance.Rda")')
  
  # reshape the data to make variation not a column itself, but a part of
  # the other columns describe ie, time, speedup, etc.
  #
  # also, remove the 'ideal' problem as we don't want it in this plot.
  df = r('''
redf = reshape (df, 
                timevar="Variation", 
                idvar = c("Language","Problem","Threads"), 
                direction="wide")
redf$Problem <- factor(redf$Problem, levels = c("randmat","thresh","winnow","outer","product","chain"))
redf[which(redf$Problem != "ideal"),]
''')
  
  r.pdf ('speedup-expertpar-all.pdf',
         height=6.5, width=10)

  change_name = 'Language'

  legendVec = IntVector (range (len (langs_ideal)))
  legendVec.names = StrVector (langs_ideal)

  gg = ggplot2.ggplot (df)

  limits = ggplot2.aes (ymax = 'SpeedupUpper.expertpar', ymin = 'SpeedupLower.expertpar')
  dodge = ggplot2.position_dodge (width=0.9)

  pp = gg + \
      ggplot2.geom_line() + ggplot2.geom_point(size=2.5) +\
      robjects.r('scale_color_manual(values = c("#ffcb7e", "#1da06b", "#b94646", "#00368a", "#CCCCCC"))') +\
      ggplot2.aes_string(x='Threads', y='Speedup.expertpar', 
                         group=change_name, color=change_name, 
                         shape=change_name) + \
      ggplot2.geom_errorbar (limits, width=0.25) + \
      ggplot2.opts (**{'axis.title.x' : ggplot2.theme_text(family = 'serif', face = 'bold', size = 10, vjust=-0.2),
                       'axis.title.y' : ggplot2.theme_text(family = 'serif', face = 'bold', size = 10, angle=90, vjust=0.2),
                       'axis.text.x' : ggplot2.theme_text(family = 'serif', size = 10),
                       'axis.text.y' : ggplot2.theme_text(family = 'serif', size = 10),
                       'legend.title' : ggplot2.theme_text(family = 'serif', face = 'bold', size = 10),
                       'legend.text' : ggplot2.theme_text(family = 'serif', size = 10),
                       'strip.text.x' : ggplot2.theme_text(family = 'serif', size = 10),
                       'aspect.ratio' : 1,
                       }) + \
      robjects.r('ylab("Speedup")') + \
      robjects.r('xlab("Number of cores")') + \
      ggplot2.facet_wrap ('Problem', nrow = 2)

  pp.plot()

  r['dev.off']()
Exemplo n.º 7
0
 def rotated_text():
   return ggplot2.theme_text(family = 'serif', face = 'bold', 
                             size = 15, angle=90, vjust=0.2)
Exemplo n.º 8
0
 def bold_text():
   return ggplot2.theme_text(family = 'serif', face = 'bold', size = 15)
Exemplo n.º 9
0
 def normal_text():
   return ggplot2.theme_text(family = 'serif', size = 15)
Exemplo n.º 10
0
 def bold_text():
     return ggplot2.theme_text(family='serif', face='bold', size=15)
Exemplo n.º 11
0
## we can then call any function in the grdevices package
grdevices = importr('grDevices')
grdevices.png(file='/Users/user/Downloads/data/mapplot.png',
              width=1300,
              height=1000)

## plot the map
## note that the order matters when we add another layer in ggplot (here IL_railroads): first aes, then data, that's different from R
## (see http://permalink.gmane.org/gmane.comp.python.rpy/2349)
## note that we use dictionary to set the opts to be able to set options as keywords, for example legend.key.size
p_map = ggplot2.ggplot(IL_final) + \
     ggplot2.geom_polygon(ggplot2.aes(x = 'long', y = 'lat', group = 'group', color = 'ObamaShare', fill = 'ObamaShare')) + \
     ggplot2.scale_fill_gradient(high = 'blue', low = 'red') + \
     ggplot2.scale_fill_continuous(name = "Obama Vote Share") + \
     ggplot2.scale_colour_continuous(name = "Obama Vote Share") + \
     ggplot2.opts(**{'legend.position': 'left', 'legend.key.size': robjects.r.unit(2, 'lines'), 'legend.title' : ggplot2.theme_text(size = 14, hjust=0), \
                     'legend.text': ggplot2.theme_text(size = 12), 'title' : "Obama Vote Share and Distance to Railroads in IL", \
                     'plot.title': ggplot2.theme_text(size = 24), 'plot.margin': robjects.r.unit(robjects.r.rep(0,4),'lines'), \
                     'panel.background': ggplot2.theme_blank(), 'panel.grid.minor': ggplot2.theme_blank(), 'panel.grid.major': ggplot2.theme_blank(), \
                     'axis.ticks': ggplot2.theme_blank(), 'axis.title.x': ggplot2.theme_blank(), 'axis.title.y': ggplot2.theme_blank(), \
                     'axis.title.x': ggplot2.theme_blank(), 'axis.title.x': ggplot2.theme_blank(), 'axis.text.x': ggplot2.theme_blank(), \
                     'axis.text.y': ggplot2.theme_blank()} ) + \
     ggplot2.geom_line(ggplot2.aes(x='long', y='lat', group='group'), data=IL_railroads, color='grey', size=0.2) + \
     ggplot2.coord_equal()

p_map.plot()

## add the scatterplot
## define layout of subplot with viewports

vp_sub = grid.viewport(x=0.19, y=0.2, width=0.32, height=0.4)
Exemplo n.º 12
0
    def plot(self,
             fn,
             x='x',
             y='y',
             col=None,
             group=None,
             w=1100,
             h=800,
             size=2,
             smooth=True,
             point=True,
             jitter=False,
             boxplot=False,
             boxplot2=False,
             title=False,
             flip=False,
             se=False,
             density=False,
             line=False):
        df = self.df
        #import math, datetime

        grdevices = importr('grDevices')

        if not title:
            title = fn.split("/")[-1]

        grdevices.png(file=fn, width=w, height=h)
        gp = ggplot2.ggplot(df)
        pp = gp
        if col and group:
            pp += ggplot2.aes_string(x=x, y=y, col=col, group=group)
        elif col:
            pp += ggplot2.aes_string(x=x, y=y, col=col)
        elif group:
            pp += ggplot2.aes_string(x=x, y=y, group=group)
        else:
            pp += ggplot2.aes_string(x=x, y=y)

        if boxplot:
            if col:
                pp += ggplot2.geom_boxplot(ggplot2.aes_string(fill=col),
                                           color='blue')
            else:
                pp += ggplot2.geom_boxplot(color='blue')

        if point:
            if jitter:
                if col:
                    pp += ggplot2.geom_point(ggplot2.aes_string(fill=col,
                                                                col=col),
                                             size=size,
                                             position='jitter')
                else:
                    pp += ggplot2.geom_point(size=size, position='jitter')
            else:
                if col:
                    pp += ggplot2.geom_point(ggplot2.aes_string(fill=col,
                                                                col=col),
                                             size=size)
                else:
                    pp += ggplot2.geom_point(size=size)

        if boxplot2:
            if col:
                pp += ggplot2.geom_boxplot(ggplot2.aes_string(fill=col),
                                           color='blue',
                                           outlier_colour="NA")
            else:
                pp += ggplot2.geom_boxplot(color='blue')

        if smooth:
            if smooth == 'lm':
                if col:
                    pp += ggplot2.stat_smooth(ggplot2.aes_string(col=col),
                                              size=1,
                                              method='lm',
                                              se=se)
                else:
                    pp += ggplot2.stat_smooth(col='blue',
                                              size=1,
                                              method='lm',
                                              se=se)
            else:
                if col:
                    pp += ggplot2.stat_smooth(ggplot2.aes_string(col=col),
                                              size=1,
                                              se=se)
                else:
                    pp += ggplot2.stat_smooth(col='blue', size=1, se=se)

        if density:
            pp += ggplot2.geom_density(ggplot2.aes_string(x=x, y='..count..'))

        if line:
            pp += ggplot2.geom_line(position='jitter')

        pp += ggplot2.opts(
            **{
                'title': title,
                'axis.text.x': ggplot2.theme_text(size=24),
                'axis.text.y': ggplot2.theme_text(size=24, hjust=1)
            })
        #pp+=ggplot2.scale_colour_brewer(palette="Set1")
        pp += ggplot2.scale_colour_hue()
        if flip:
            pp += ggplot2.coord_flip()

        pp.plot()
        grdevices.dev_off()
        print ">> saved: " + fn
Exemplo n.º 13
0
	def plot(self, fn, x='x', y='y', col=None, group=None, w=1100, h=800, size=2, smooth=True, point=True, jitter=False, boxplot=False, boxplot2=False, title=False, flip=False, se=False, density=False, line=False):
		df=self.df
		#import math, datetime
		

		grdevices = importr('grDevices')

		if not title:
			title=fn.split("/")[-1]

		grdevices.png(file=fn, width=w, height=h)
		gp = ggplot2.ggplot(df)
		pp = gp	
		if col and group:
			pp+=ggplot2.aes_string(x=x, y=y,col=col,group=group)
		elif col:
			pp+=ggplot2.aes_string(x=x, y=y,col=col)
		elif group:
			pp+=ggplot2.aes_string(x=x, y=y,group=group)
		else:
			pp+=ggplot2.aes_string(x=x, y=y)	

		if boxplot:
			if col:
				pp+=ggplot2.geom_boxplot(ggplot2.aes_string(fill=col),color='blue')
			else:
				pp+=ggplot2.geom_boxplot(color='blue')	

		if point:
			if jitter:
				if col:
					pp+=ggplot2.geom_point(ggplot2.aes_string(fill=col,col=col),size=size,position='jitter')
				else:
					pp+=ggplot2.geom_point(size=size,position='jitter')
			else:
				if col:
					pp+=ggplot2.geom_point(ggplot2.aes_string(fill=col,col=col),size=size)
				else:
					pp+=ggplot2.geom_point(size=size)


		if boxplot2:
			if col:
				pp+=ggplot2.geom_boxplot(ggplot2.aes_string(fill=col),color='blue',outlier_colour="NA")
			else:
				pp+=ggplot2.geom_boxplot(color='blue')

		if smooth:
			if smooth=='lm':
				if col:
					pp+=ggplot2.stat_smooth(ggplot2.aes_string(col=col),size=1,method='lm',se=se)
				else:
					pp+=ggplot2.stat_smooth(col='blue',size=1,method='lm',se=se)
			else:
				if col:
					pp+=ggplot2.stat_smooth(ggplot2.aes_string(col=col),size=1,se=se)
				else:
					pp+=ggplot2.stat_smooth(col='blue',size=1,se=se)

		if density:
			pp+=ggplot2.geom_density(ggplot2.aes_string(x=x,y='..count..'))

		if line:
			pp+=ggplot2.geom_line(position='jitter')


		pp+=ggplot2.opts(**{'title' : title, 'axis.text.x': ggplot2.theme_text(size=24), 'axis.text.y': ggplot2.theme_text(size=24,hjust=1)} )
		#pp+=ggplot2.scale_colour_brewer(palette="Set1")
		pp+=ggplot2.scale_colour_hue()
		if flip:
			pp+=ggplot2.coord_flip()



		pp.plot()
		grdevices.dev_off()
		print ">> saved: "+fn
Exemplo n.º 14
0
def line_plot(cfg, var, control, change_name, changing, selector,
              base_selector, basis):
    speedups = []
    thrds = []
    changes = []
    lowers = []
    uppers = []

    for n in cfg.threads:
        probs.append('ideal')
        langs.append('ideal')
        speedups.append(n)
        thrds.append(n)
        changes.append('ideal')
        lowers.append(n)
        uppers.append(n)

    for c in changing:
        sel = selector(c)

        # sequential base
        base = FloatVector(base_selector(c))
        # base with p = 1
        base_p1 = FloatVector(sel(1))
        # use fastest sequential program
        if basis == 'fastest' and mean(base_p1) < mean(base):
            base = base_p1
        elif basis == 'seq':
            pass
        elif basis == 'p1':
            base = base_p1

        for n in cfg.threads:
            ntimes = FloatVector(sel(n))

            # ratio confidence interval
            labels = ['Base'] * r.length(base)[0] + ['N'] * r.length(ntimes)[0]
            df = DataFrame({'Times': base + ntimes, 'Type': StrVector(labels)})
            ratio_test = r['pairwiseCI'](r('Times ~ Type'),
                                         data=df,
                                         control='N',
                                         method='Param.ratio',
                                         **{
                                             'var.equal': False,
                                             'conf.level': 0.999
                                         })[0][0]

            lowers.append(ratio_test[1][0])
            uppers.append(ratio_test[2][0])

            mn = mean(ntimes)
            speedups.append(mean(base) / mn)
            # plot slowdowns
            #speedups.append (-mn/base)#(base / mn)
            thrds.append(n)
            if change_name == 'Language':
                changes.append(pretty_langs[c])
            else:
                changes.append(c)

    df = DataFrame({
        'Speedup': FloatVector(speedups),
        'Threads': IntVector(thrds),
        change_name: StrVector(changes),
        'Lower': FloatVector(lowers),
        'Upper': FloatVector(uppers)
    })
    ideal_changing = ['ideal']
    if change_name == 'Language':
        ideal_changing.extend([pretty_langs[c] for c in changing])
    else:
        ideal_changing.extend(changing)

    legendVec = IntVector(range(len(ideal_changing)))
    legendVec.names = StrVector(ideal_changing)

    gg = ggplot2.ggplot(df)

    limits = ggplot2.aes(ymax='Upper', ymin='Lower')
    dodge = ggplot2.position_dodge(width=0.9)

    pp = gg + \
        ggplot2.geom_line() + ggplot2.geom_point(size=3) +\
        ggplot2.aes_string(x='Threads', y='Speedup',
                           group=change_name, color=change_name,
                           shape=change_name) + \
        ggplot2.scale_shape_manual(values=legendVec) + \
        ggplot2.geom_errorbar (limits, width=0.25) + \
        ggplot2_options () + \
        ggplot2_colors () + \
        ggplot2.opts (**{'axis.title.x' : ggplot2.theme_text(family = 'serif', face = 'bold', size = 15, vjust=-0.2)}) + \
        robjects.r('ylab("Speedup")') + \
        robjects.r('xlab("Cores")')

    # ggplot2.xlim (min(threads), max(threads)) + ggplot2.ylim(min(threads), max(threads)) +\
    pp.plot()

    r['dev.off']()
Exemplo n.º 15
0
def as_dataframe(cfg, results, basis):
    r = robjects.r
    varis = []
    langs = []
    probs = []
    times = []
    threads = []

    # speedups, with upper and lower bounds below
    speedups = []
    speedup_lowers = []
    speedup_uppers = []

    ses = []  # standard errors
    mems = []  # memory usage

    langs_ideal = list(cfg.languages)
    langs_ideal.append('ideal')

    probs_ideal = list(cfg.problems)
    probs_ideal.append('ideal')

    for var in cfg.variations:
        for lang in langs_ideal:  # cfg.languages:
            for prob in probs_ideal:  # cfg.problems:
                for thread in cfg.threads:

                    if lang == 'ideal' and prob == 'ideal':
                        continue
                    elif lang == 'ideal' or prob == 'ideal':
                        varis.append(var)
                        langs.append(pretty_langs[lang])
                        probs.append(prob)
                        threads.append(thread)
                        speedups.append(thread)
                        speedup_lowers.append(thread)
                        speedup_uppers.append(thread)
                        times.append(0)
                        ses.append(0)
                        mems.append(0)
                        continue

                    varis.append(var)  # pretty_varis [var])
                    langs.append(pretty_langs[lang])
                    probs.append(prob)
                    threads.append(thread)

                    if var.find('seq') >= 0:
                        thread = cfg.threads[-1]

                    vals = FloatVector(results[thread][prob][var][lang][0])
                    time = mean(vals)
                    times.append(time)

                    #
                    # time confidence interval
                    #
                    t_result = r['t.test'](FloatVector(vals), **{
                        " conf.level": 0.999
                    }).rx('conf.int')[0]
                    ses.append((t_result[1] - t_result[0]) / 2)

                    #
                    # memory usage
                    #
                    mem_filename = get_mem_output(lang, prob, var)
                    with open(mem_filename, 'r') as mem_file:
                        mem = mem_file.readline()
                        mems.append(float(mem))

                    # we include dummy data for the sequential case to avoid the
                    # speedup calculation below
                    if var.find('seq') >= 0:
                        speedups.append(1)
                        speedup_lowers.append(1)
                        speedup_uppers.append(1)
                        continue

                    #
                    # speedup values and confidence intervals
                    #
                    seq_vals = results[cfg.threads[-1]][prob][var.replace(
                        'par', 'seq')][lang][0]

                    # sequential base
                    base = FloatVector(seq_vals)
                    # base with p = 1
                    base_p1 = FloatVector(results[1][prob][var][lang][0])
                    # use fastest sequential program
                    if basis == 'fastest' and mean(base_p1) < mean(base):
                        base = base_p1
                    elif basis == 'seq':
                        pass
                    elif basis == 'p1':
                        base = base_p1

                    labels = ['Base'
                              ] * r.length(base)[0] + ['N'] * r.length(vals)[0]
                    df = DataFrame({
                        'Times': base + vals,
                        'Type': StrVector(labels)
                    })
                    ratio_test = r['pairwiseCI'](r('Times ~ Type'),
                                                 data=df,
                                                 control='N',
                                                 method='Param.ratio',
                                                 **{
                                                     'var.equal': False
                                                 })[0][0]

                    speedups.append(mean(base) / time)
                    speedup_lowers.append(ratio_test[1][0])
                    speedup_uppers.append(ratio_test[2][0])

    df = robjects.DataFrame({
        'Language': StrVector(langs),
        'Problem': StrVector(probs),
        'Variation': StrVector(varis),
        'Threads': IntVector(threads),
        'Time': FloatVector(times),
        'SE': FloatVector(ses),
        'Speedup': FloatVector(speedups),
        'SpeedupLower': FloatVector(speedup_lowers),
        'SpeedupUpper': FloatVector(speedup_uppers),
        'Mem': FloatVector(mems)
    })

    r.assign('df', df)

    r('save (df, file="performance.Rda")')

    # reshape the data to make variation not a column itself, but a part of
    # the other columns describe ie, time, speedup, etc.
    #
    # also, remove the 'ideal' problem as we don't want it in this plot.
    df = r('''
redf = reshape (df, 
                timevar="Variation", 
                idvar = c("Language","Problem","Threads"), 
                direction="wide")
redf$Problem <- factor(redf$Problem, levels = c("randmat","thresh","winnow","outer","product","chain"))
redf[which(redf$Problem != "ideal"),]
''')

    r.pdf('speedup-expertpar-all.pdf', height=6.5, width=10)

    change_name = 'Language'

    legendVec = IntVector(range(len(langs_ideal)))
    legendVec.names = StrVector(langs_ideal)

    gg = ggplot2.ggplot(df)

    limits = ggplot2.aes(ymax='SpeedupUpper.expertpar',
                         ymin='SpeedupLower.expertpar')
    dodge = ggplot2.position_dodge(width=0.9)

    pp = gg + \
        ggplot2.geom_line() + ggplot2.geom_point(size=2.5) +\
        robjects.r('scale_color_manual(values = c("#ffcb7e", "#1da06b", "#b94646", "#00368a", "#CCCCCC"))') +\
        ggplot2.aes_string(x='Threads', y='Speedup.expertpar',
                           group=change_name, color=change_name,
                           shape=change_name) + \
        ggplot2.geom_errorbar (limits, width=0.25) + \
        ggplot2.opts (**{'axis.title.x' : ggplot2.theme_text(family = 'serif', face = 'bold', size = 10, vjust=-0.2),
                         'axis.title.y' : ggplot2.theme_text(family = 'serif', face = 'bold', size = 10, angle=90, vjust=0.2),
                         'axis.text.x' : ggplot2.theme_text(family = 'serif', size = 10),
                         'axis.text.y' : ggplot2.theme_text(family = 'serif', size = 10),
                         'legend.title' : ggplot2.theme_text(family = 'serif', face = 'bold', size = 10),
                         'legend.text' : ggplot2.theme_text(family = 'serif', size = 10),
                         'strip.text.x' : ggplot2.theme_text(family = 'serif', size = 10),
                         'aspect.ratio' : 1,
                         }) + \
        robjects.r('ylab("Speedup")') + \
        robjects.r('xlab("Number of cores")') + \
        ggplot2.facet_wrap ('Problem', nrow = 2)

    pp.plot()

    r['dev.off']()
Exemplo n.º 16
0
Arquivo: test.py Projeto: dvu4/udacity
 
## import device driver from R with importr to plot to PNG
## we can then call any function in the grdevices package
grdevices = importr('grDevices')
grdevices.png(file='/Users/user/Downloads/data/mapplot.png', width=1300, height=1000)
 
## plot the map
## note that the order matters when we add another layer in ggplot (here IL_railroads): first aes, then data, that's different from R 
## (see http://permalink.gmane.org/gmane.comp.python.rpy/2349) 
## note that we use dictionary to set the opts to be able to set options as keywords, for example legend.key.size
p_map = ggplot2.ggplot(IL_final) + \
     ggplot2.geom_polygon(ggplot2.aes(x = 'long', y = 'lat', group = 'group', color = 'ObamaShare', fill = 'ObamaShare')) + \
     ggplot2.scale_fill_gradient(high = 'blue', low = 'red') + \
     ggplot2.scale_fill_continuous(name = "Obama Vote Share") + \
     ggplot2.scale_colour_continuous(name = "Obama Vote Share") + \
     ggplot2.opts(**{'legend.position': 'left', 'legend.key.size': robjects.r.unit(2, 'lines'), 'legend.title' : ggplot2.theme_text(size = 14, hjust=0), \
                     'legend.text': ggplot2.theme_text(size = 12), 'title' : "Obama Vote Share and Distance to Railroads in IL", \
                     'plot.title': ggplot2.theme_text(size = 24), 'plot.margin': robjects.r.unit(robjects.r.rep(0,4),'lines'), \
                     'panel.background': ggplot2.theme_blank(), 'panel.grid.minor': ggplot2.theme_blank(), 'panel.grid.major': ggplot2.theme_blank(), \
                     'axis.ticks': ggplot2.theme_blank(), 'axis.title.x': ggplot2.theme_blank(), 'axis.title.y': ggplot2.theme_blank(), \
                     'axis.title.x': ggplot2.theme_blank(), 'axis.title.x': ggplot2.theme_blank(), 'axis.text.x': ggplot2.theme_blank(), \
                     'axis.text.y': ggplot2.theme_blank()} ) + \
     ggplot2.geom_line(ggplot2.aes(x='long', y='lat', group='group'), data=IL_railroads, color='grey', size=0.2) + \
     ggplot2.coord_equal()
 
p_map.plot()
 
## add the scatterplot
## define layout of subplot with viewports

vp_sub = grid.viewport(x = 0.19, y = 0.2, width = 0.32, height = 0.4)
Exemplo n.º 17
0
grid.newpage()

# create a viewport as the main plot
vp = grid.viewport(width = 1, height = 1) 
vp.push()

p = ggplot2.ggplot(datasets.rock) + \
    ggplot2.geom_point(ggplot2.aes_string(x = 'area', y = 'peri')) + \
    ggplot2.theme_bw()
p.plot(vp = vp)

vp = grid.viewport(width = 0.6, height = 0.6, x = 0.37, y=0.69)
vp.push()
p = ggplot2.ggplot(datasets.rock) + \
    ggplot2.geom_point(ggplot2.aes_string(x = 'area', y = 'shape')) + \
    ggplot2.opts(**{'axis.text.x': ggplot2.theme_text(angle = 45)})

p.plot(vp = vp)

#-- gridwithggplot2-end
grdevices.dev_off()




#---

pp = gp + \
     ggplot2.aes_string(x='wt', y='mpg') + \
     ggplot2.geom_density(ggplot2.aes_string(group = 'cyl')) + \
     ggplot2.geom_point() + \
Exemplo n.º 18
0
 def normal_text():
     return ggplot2.theme_text(family='serif', size=15)
Exemplo n.º 19
0
 def rotated_text():
     return ggplot2.theme_text(family='serif',
                               face='bold',
                               size=15,
                               angle=90,
                               vjust=0.2)