Exemplo n.º 1
0
    def setUp(self):
        self.finger = SimFinger(
            finger_type="single", time_step=0.001, enable_visualization=False,
        )

        self.start_position = [0, -0.7, -1.5]
        self.finger.reset_finger_positions_and_velocities(self.start_position)
Exemplo n.º 2
0
    def test_constant_torque(self):
        """Compare two runs sending a constant torque.

        In each run the finger is reset to a fixed position and a constant
        torque is applied for a number of steps.  The final observation of each
        run is compared.  If the simulation behaves deterministically, the
        observations should be equal.
        """
        finger = SimFinger(finger_type="single",)

        start_position = [0.5, -0.7, -1.5]
        action = finger.Action(torque=[0.3, 0.3, 0.3])

        def run():
            finger.reset_finger_positions_and_velocities(start_position)
            for i in range(30):
                finger._set_desired_action(action)
                finger._step_simulation()
            return finger._get_latest_observation()

        first_run = run()
        second_run = run()

        np.testing.assert_array_equal(first_run.torque, second_run.torque)
        np.testing.assert_array_equal(first_run.position, second_run.position)
        np.testing.assert_array_equal(first_run.velocity, second_run.velocity)
Exemplo n.º 3
0
def execute_random_motion(*, finger_name, nb_timesteps, enable_visualization):
    finger = SimFinger(
        finger_type=finger_name,
        time_step=0.004,
        enable_visualization=enable_visualization,
    )
    cube = collision_objects.Block()

    for t in range(nb_timesteps):
        if t % 50 == 0:
            torque = np.random.uniform(low=-0.36, high=0.36, size=(9))
        finger.append_desired_action(finger.Action(torque=torque))
    del finger
    del cube
Exemplo n.º 4
0
    def test_reproduce_reset_state(self):
        """
        Send hundred states (positions + velocities) to all the 1DOF joints
        of the fingers and assert they exactly reach these states.
        """
        finger = SimFinger(finger_type="fingerone")

        for _ in range(100):
            state_positions = sample.random_joint_positions(
                finger.number_of_fingers)
            state_velocities = [pos * 10 for pos in state_positions]

            reset_state = finger.reset_finger_positions_and_velocities(
                state_positions, state_velocities)

            reset_positions = reset_state.position
            reset_velocities = reset_state.velocity

            np.testing.assert_array_equal(reset_positions,
                                          state_positions,
                                          verbose=True)
            np.testing.assert_array_equal(reset_velocities,
                                          state_velocities,
                                          verbose=True)
Exemplo n.º 5
0
 def test_loading_urdfs_locally(self):
     """
     Get the keys corresponding to the valid finger types
     from BaseFinger and try importing their corresponding
     URDFs.
     """
     finger_data = finger_types_data.finger_types_data
     for key in finger_data.keys():
         try:
             os.environ["ROS_PACKAGE_PATH"] = " "
             SimFinger(finger_type=key,)
         except pybullet.error as e:
             self.fail(
                 "Failed to import the local copies of the urdf for"
                 "SimFinger(finger_type={}): {}".format(key, e)
             )
Exemplo n.º 6
0
    def test_loading_urdfs(self):
        """
        Get the keys corresponding to the valid finger types
        from BaseFinger and try importing their corresponding
        URDFs.
        """
        finger_data = finger_types_data.finger_types_data
        for key in finger_data.keys():
            try:
                SimFinger(finger_type=key,)

            except pybullet.error as e:
                self.fail(
                    "Failed to create SimFinger(finger_type={}): {}".format(
                        key, e
                    )
                )
Exemplo n.º 7
0
class TestRobotEquivalentInterface(unittest.TestCase):
    """
    Test the methods of SimFinger that provide an interface equivalent to the
    RobotFrontend of robot_interfaces.
    """
    def setUp(self):
        self.finger = SimFinger(
            finger_type="fingerone",
            time_step=0.001,
            enable_visualization=False,
        )

        self.start_position = [0, -0.7, -1.5]
        self.finger.reset_finger_positions_and_velocities(self.start_position)

    def tearDown(self):
        # destroy the simulation to ensure that the next test starts with a
        # clean state
        del self.finger

    def test_timing_action_t_vs_observation_t(self):
        """Verify that observation_t is really not affected by action_t."""
        # Apply a max torque action for one step
        action = self.finger.Action(torque=[
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
        ])
        t = self.finger.append_desired_action(action)
        obs = self.finger.get_observation(t)

        # as obs_t is from just before action_t is applied, the position should
        # not yet have changed
        np.testing.assert_array_equal(self.start_position, obs.position)

        # after applying another action (even with zero torque), we should see
        # the effect
        t = self.finger.append_desired_action(self.finger.Action())
        obs = self.finger.get_observation(t)
        # new position should be less, as negative torque is applied
        np.testing.assert_array_less(obs.position, self.start_position)

    def test_timing_action_t_vs_observation_tplus1(self):
        """Verify that observation_{t+1} is affected by action_t."""
        # Apply a max torque action for one step
        action = self.finger.Action(torque=[
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
        ])
        t = self.finger.append_desired_action(action)
        obs = self.finger.get_observation(t + 1)

        # new position should be less, as negative torque is applied
        np.testing.assert_array_less(obs.position, self.start_position)

    def test_timing_observation_t_vs_tplus1(self):
        # Apply a max torque action for one step
        action = self.finger.Action(torque=[
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
        ])
        t = self.finger.append_desired_action(action)
        obs_t = self.finger.get_observation(t)
        obs_tplus1 = self.finger.get_observation(t + 1)

        # newer position should be lesser, as negative torque is applied
        np.testing.assert_array_less(obs_tplus1.position, obs_t.position)

    def test_timing_observation_t_multiple_times(self):
        """
        Verify that calling get_observation(t) multiple times always gives same
        result.
        """
        # Apply a max torque action for one step
        action = self.finger.Action(torque=[
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
        ])
        t = self.finger.append_desired_action(action)
        obs_t1 = self.finger.get_observation(t)

        # observation should not change when calling multiple times with same t
        for i in range(10):
            obs_ti = self.finger.get_observation(t)
            np.testing.assert_array_equal(obs_t1.position, obs_ti.position)
            np.testing.assert_array_equal(obs_t1.velocity, obs_ti.velocity)
            np.testing.assert_array_equal(obs_t1.torque, obs_ti.torque)
            np.testing.assert_array_equal(obs_t1.tip_force, obs_ti.tip_force)

    def test_timing_observation_tplus1_multiple_times(self):
        """
        Verify that calling get_observation(t + 1) multiple times always gives
        same result.
        """
        # Apply a max torque action for one step
        action = self.finger.Action(torque=[
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
        ])
        t = self.finger.append_desired_action(action)
        obs_t1 = self.finger.get_observation(t + 1)

        # observation should not change when calling multiple times with same t
        for i in range(10):
            obs_ti = self.finger.get_observation(t + 1)
            np.testing.assert_array_equal(obs_t1.position, obs_ti.position)
            np.testing.assert_array_equal(obs_t1.velocity, obs_ti.velocity)
            np.testing.assert_array_equal(obs_t1.torque, obs_ti.torque)
            np.testing.assert_array_equal(obs_t1.tip_force, obs_ti.tip_force)

    def test_exception_on_old_t(self):
        """Verify that calling get_observation with invalid t raises error."""
        # verify that t < 0 is not accepted
        with self.assertRaises(ValueError):
            self.finger.get_observation(-1)

        # append two actions
        t1 = self.finger.append_desired_action(self.finger.Action())
        t2 = self.finger.append_desired_action(self.finger.Action())

        # it should be possible to get observation for t2 and t2 + 1 but not t1
        # or t2 + 2
        self.finger.get_observation(t2)
        self.finger.get_observation(t2 + 1)

        with self.assertRaises(ValueError):
            self.finger.get_observation(t1)

        with self.assertRaises(ValueError):
            self.finger.get_observation(t2 + 2)

    def test_observation_types(self):
        """Verify that all fields of observation are np.ndarrays."""
        # Apply a max torque action for one step
        action = self.finger.Action(torque=[
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
        ])
        t = self.finger.append_desired_action(action)
        obs = self.finger.get_observation(t)

        # verify types
        self.assertIsInstance(obs.torque, np.ndarray)
        self.assertIsInstance(obs.position, np.ndarray)
        self.assertIsInstance(obs.velocity, np.ndarray)
        self.assertIsInstance(obs.tip_force, np.ndarray)

    def test_get_desired_action(self):
        # verify that t < 0 is not accepted
        with self.assertRaises(ValueError):
            self.finger.get_desired_action(-1)

        orig_action = self.finger.Action(torque=[1.0, 2.0, 3.0],
                                         position=[0.0, -1.0, -2.0])
        t = self.finger.append_desired_action(orig_action)
        action = self.finger.get_desired_action(t)

        np.testing.assert_array_equal(orig_action.torque, action.torque)
        np.testing.assert_array_equal(orig_action.position, action.position)

        # verify types
        self.assertIsInstance(action.torque, np.ndarray)
        self.assertIsInstance(action.position, np.ndarray)
        self.assertIsInstance(action.position_kd, np.ndarray)
        self.assertIsInstance(action.position_kp, np.ndarray)

    def test_get_applied_action(self):
        # verify that t < 0 is not accepted
        with self.assertRaises(ValueError):
            self.finger.get_applied_action(-1)

        desired_action = self.finger.Action(torque=[5, 5, 5])
        t = self.finger.append_desired_action(desired_action)
        applied_action = self.finger.get_applied_action(t)

        np.testing.assert_array_almost_equal(
            applied_action.torque,
            [
                self.finger.max_motor_torque,
                self.finger.max_motor_torque,
                self.finger.max_motor_torque,
            ],
        )

        # verify types
        self.assertIsInstance(applied_action.torque, np.ndarray)
        self.assertIsInstance(applied_action.position, np.ndarray)
        self.assertIsInstance(applied_action.position_kd, np.ndarray)
        self.assertIsInstance(applied_action.position_kp, np.ndarray)

    def test_get_timestamp_ms_001(self):
        t = self.finger.append_desired_action(self.finger.Action())
        first_stamp = self.finger.get_timestamp_ms(t)
        t = self.finger.append_desired_action(self.finger.Action())
        second_stamp = self.finger.get_timestamp_ms(t)

        # time step is set to 0.001, so the difference between two steps should
        # be 1 ms.
        self.assertEqual(second_stamp - first_stamp, 1)

    def test_get_timestamp_ms_tplus1_001(self):
        t = self.finger.append_desired_action(self.finger.Action())
        stamp_t = self.finger.get_timestamp_ms(t)
        stamp_tp1 = self.finger.get_timestamp_ms(t + 1)

        # time step is set to 0.001, so the difference between two steps should
        # be 1 ms.
        self.assertEqual(stamp_tp1 - stamp_t, 1)

    def test_get_timestamp_ms_invalid_t(self):
        # verify that t < 0 is not accepted
        with self.assertRaises(ValueError):
            self.finger.get_timestamp_ms(-1)

        t = self.finger.append_desired_action(self.finger.Action())

        with self.assertRaises(ValueError):
            self.finger.get_timestamp_ms(t - 1)

        with self.assertRaises(ValueError):
            self.finger.get_timestamp_ms(t + 2)

    def test_get_current_timeindex(self):
        # no time index before first action
        with self.assertRaises(ValueError):
            self.finger.get_current_timeindex()

        t = self.finger.append_desired_action(self.finger.Action())
        self.assertEqual(self.finger.get_current_timeindex(), t)
Exemplo n.º 8
0
class TriFingerPlatform:
    """
    Wrapper around the simulation providing the same interface as
    ``robot_interfaces::TriFingerPlatformFrontend``.

    The following methods of the robot_interfaces counterpart are not
    supported:

    - get_robot_status()
    - wait_until_timeindex()

    """

    # Create the action and observation spaces
    # ========================================

    _n_joints = 9
    _n_fingers = 3
    _max_torque_Nm = 0.36
    _max_velocity_radps = 10

    spaces = SimpleNamespace()

    spaces.robot_torque = SimpleNamespace(
        low=np.full(_n_joints, -_max_torque_Nm, dtype=np.float32),
        high=np.full(_n_joints, _max_torque_Nm, dtype=np.float32),
        default=np.zeros(_n_joints, dtype=np.float32),
    )
    spaces.robot_position = SimpleNamespace(
        low=np.array([-0.9, -1.57, -2.7] * _n_fingers, dtype=np.float32),
        high=np.array([1.4, 1.57, 0.0] * _n_fingers, dtype=np.float32),
        default=np.array(
            [0.0, np.deg2rad(70), np.deg2rad(-130)] * _n_fingers,
            dtype=np.float32,
        ),
    )
    spaces.robot_velocity = SimpleNamespace(
        low=np.full(_n_joints, -_max_velocity_radps, dtype=np.float32),
        high=np.full(_n_joints, _max_velocity_radps, dtype=np.float32),
        default=np.zeros(_n_joints, dtype=np.float32),
    )
    spaces.object_position = SimpleNamespace(
        low=np.array([-0.3, -0.3, 0], dtype=np.float32),
        high=np.array([0.3, 0.3, 0.3], dtype=np.float32),
        default=np.array([0, 0, move_cube._min_height], dtype=np.float32),
    )

    spaces.object_orientation = SimpleNamespace(
        low=-np.ones(4, dtype=np.float32),
        high=np.ones(4, dtype=np.float32),
        default=move_cube.Pose().orientation,
    )

    # for convenience, we also create the respective gym spaces
    spaces.robot_torque.gym = gym.spaces.Box(low=spaces.robot_torque.low,
                                             high=spaces.robot_torque.high)
    spaces.robot_position.gym = gym.spaces.Box(low=spaces.robot_position.low,
                                               high=spaces.robot_position.high)
    spaces.robot_velocity.gym = gym.spaces.Box(low=spaces.robot_velocity.low,
                                               high=spaces.robot_velocity.high)
    spaces.object_position.gym = gym.spaces.Box(
        low=spaces.object_position.low, high=spaces.object_position.high)
    spaces.object_orientation.gym = gym.spaces.Box(
        low=spaces.object_orientation.low, high=spaces.object_orientation.high)

    def __init__(
        self,
        visualization=False,
        initial_robot_position=None,
        initial_object_pose=None,
        enable_cameras=False,
    ):
        """Initialize.

        Args:
            visualization (bool):  Set to true to run visualization.
            initial_robot_position: Initial robot joint angles
            initial_object_pose:  Initial pose for the manipulation object.
                Can be any object with attributes ``position`` (x, y, z) and
                ``orientation`` (x, y, z, w).  This is optional, if not set, a
                random pose will be sampled.
            enable_cameras (bool):  Set to true to enable camera observations.
                By default this is disabled as rendering of images takes a lot
                of computational power.  Therefore the cameras should only be
                enabled if the images are actually used.
        """
        #: Camera rate in frames per second.  Observations of camera and
        #: object pose will only be updated with this rate.
        #: NOTE: This is currently not used!
        self._camera_rate_fps = 30

        #: Set to true to render camera observations
        self.enable_cameras = enable_cameras

        #: Simulation time step
        self._time_step = 0.004

        # first camera update in the first step
        self._next_camera_update_step = 0

        # Initialize robot, object and cameras
        # ====================================

        self.simfinger = SimFinger(
            finger_type="trifingerpro",
            time_step=self._time_step,
            enable_visualization=visualization,
        )

        if initial_robot_position is None:
            initial_robot_position = self.spaces.robot_position.default

        self.simfinger.reset_finger_positions_and_velocities(
            initial_robot_position)

        if initial_object_pose is None:
            initial_object_pose = move_cube.Pose(
                position=self.spaces.object_position.default,
                orientation=self.spaces.object_orientation.default,
            )
        self.cube = collision_objects.Block(
            initial_object_pose.position,
            initial_object_pose.orientation,
            mass=0.020,
        )

        self.tricamera = camera.TriFingerCameras()

        # Forward some methods for convenience
        # ====================================
        # forward "RobotFrontend" methods directly to simfinger
        self.Action = self.simfinger.Action
        self.get_desired_action = self.simfinger.get_desired_action
        self.get_applied_action = self.simfinger.get_applied_action
        self.get_timestamp_ms = self.simfinger.get_timestamp_ms
        self.get_current_timeindex = self.simfinger.get_current_timeindex
        self.get_robot_observation = self.simfinger.get_observation

        # forward kinematics directly to simfinger
        self.forward_kinematics = (
            self.simfinger.pinocchio_utils.forward_kinematics)

        # Initialize log
        # ==============
        self._action_log = {
            "initial_robot_position": initial_robot_position.tolist(),
            "initial_object_pose": {
                "position": initial_object_pose.position.tolist(),
                "orientation": initial_object_pose.orientation.tolist(),
            },
            "actions": [],
        }

    def get_time_step(self):
        """Get simulation time step in seconds."""
        return self._time_step

    def _compute_camera_update_step_interval(self):
        return (1.0 / self._camera_rate_fps) / self._time_step

    def append_desired_action(self, action):
        """
        Call :meth:`pybullet.SimFinger.append_desired_action` and add the
        action to the action log.

        Arguments/return value are the same as for
        :meth:`pybullet.SimFinger.append_desired_action`.
        """
        # update camera and object observations only with the rate of the
        # cameras
        # next_t = self.get_current_timeindex() + 1
        # has_camera_update = next_t >= self._next_camera_update_step
        # if has_camera_update:
        #     self._next_camera_update_step += (
        #         self._compute_camera_update_step_interval()
        #     )

        #     self._object_pose_t = self._get_current_object_pose()
        #     if self.enable_cameras:
        #         self._camera_observation_t = (
        #             self._get_current_camera_observation()
        #         )

        has_camera_update = True
        self._object_pose_t = self._get_current_object_pose()
        if self.enable_cameras:
            self._camera_observation_t = self._get_current_camera_observation()

        t = self.simfinger.append_desired_action(action)

        # The correct timestamp can only be acquired now that t is given.
        # Update it accordingly in the object and camera observations
        if has_camera_update:
            camera_timestamp_s = self.get_timestamp_ms(t) / 1000
            self._object_pose_t.timestamp = camera_timestamp_s
            if self.enable_cameras:
                for i in range(len(self._camera_observation_t.cameras)):
                    self._camera_observation_t.cameras[
                        i].timestamp = camera_timestamp_s

        # write the desired action to the log
        self._action_log["actions"].append({
            "t":
            t,
            "torque":
            action.torque.tolist(),
            "position":
            action.position.tolist(),
            "position_kp":
            action.position_kp.tolist(),
            "position_kd":
            action.position_kd.tolist(),
        })

        return t

    def _get_current_object_pose(self, t=None):
        cube_state = self.cube.get_state()
        pose = ObjectPose()
        pose.position = np.asarray(cube_state[0])
        pose.orientation = np.asarray(cube_state[1])
        pose.confidence = 1.0
        # NOTE: The timestamp can only be set correctly after time step t is
        # actually reached.  Therefore, this is set to None here and filled
        # with the proper value later.
        if t is None:
            pose.timestamp = None
        else:
            pose.timestamp = self.get_timestamp_ms(t)

        return pose

    def get_object_pose(self, t):
        """Get object pose at time step t.

        Args:
            t:  The time index of the step for which the object pose is
                requested.  Only the value returned by the last call of
                :meth:`~append_desired_action` is valid.

        Returns:
            ObjectPose:  Pose of the object.  Values come directly from the
            simulation without adding noise, so the confidence is 1.0.

        Raises:
            ValueError: If invalid time index ``t`` is passed.
        """
        current_t = self.simfinger._t

        if t < 0:
            raise ValueError("Cannot access time index less than zero.")
        elif t == current_t:
            return self._object_pose_t
        elif t == current_t + 1:
            return self._get_current_object_pose(t)
        else:
            raise ValueError(
                "Given time index t has to match with index of the current"
                " step or the next one.")

    def _get_current_camera_observation(self, t=None):
        images = self.tricamera.get_images()
        observation = TriCameraObservation()
        # NOTE: The timestamp can only be set correctly after time step t
        # is actually reached.  Therefore, this is set to None here and
        # filled with the proper value later.
        if t is None:
            timestamp = None
        else:
            timestamp = self.get_timestamp_ms(t)

        for i, image in enumerate(images):
            observation.cameras[i].image = image
            observation.cameras[i].timestamp = timestamp

        return observation

    def get_camera_observation(self, t):
        """Get camera observation at time step t.

        Args:
            t:  The time index of the step for which the observation is
                requested.  Only the value returned by the last call of
                :meth:`~append_desired_action` is valid.

        Returns:
            TriCameraObservation:  Observations of the three cameras.  Images
            are rendered in the simulation.  Note that they are not optimized
            to look realistically.

        Raises:
            ValueError: If invalid time index ``t`` is passed.
        """
        if not self.enable_cameras:
            raise RuntimeError(
                "Cameras are not enabled.  Create `TriFingerPlatform` with"
                " `enable_cameras=True` if you want to use camera"
                " observations.")

        current_t = self.simfinger._t

        if t < 0:
            raise ValueError("Cannot access time index less than zero.")
        elif t == current_t:
            return self._camera_observation_t
        elif t == current_t + 1:
            return self._get_current_camera_observation(t)
        else:
            raise ValueError(
                "Given time index t has to match with index of the current"
                " step or the next one.")

    def store_action_log(self, filename):
        """Store the action log to a JSON file.

        Args:
            filename (str):  Path to the JSON file to which the log shall be
                written.  If the file exists already, it will be overwritten.
        """

        # TODO should the log also contain intermediate observations (object
        # and finger) for verification?

        t = self.simfinger.get_current_timeindex()
        object_pose = self.get_object_pose(t)
        self._action_log["final_object_pose"] = {
            "position": object_pose.position.tolist(),
            "orientation": object_pose.orientation.tolist(),
        }

        with open(filename, "w") as fh:
            json.dump(self._action_log, fh)
Exemplo n.º 9
0
    def __init__(
        self,
        visualization=False,
        initial_robot_position=None,
        initial_object_pose=None,
        enable_cameras=False,
    ):
        """Initialize.

        Args:
            visualization (bool):  Set to true to run visualization.
            initial_robot_position: Initial robot joint angles
            initial_object_pose:  Initial pose for the manipulation object.
                Can be any object with attributes ``position`` (x, y, z) and
                ``orientation`` (x, y, z, w).  This is optional, if not set, a
                random pose will be sampled.
            enable_cameras (bool):  Set to true to enable camera observations.
                By default this is disabled as rendering of images takes a lot
                of computational power.  Therefore the cameras should only be
                enabled if the images are actually used.
        """
        #: Camera rate in frames per second.  Observations of camera and
        #: object pose will only be updated with this rate.
        #: NOTE: This is currently not used!
        self._camera_rate_fps = 30

        #: Set to true to render camera observations
        self.enable_cameras = enable_cameras

        #: Simulation time step
        self._time_step = 0.004

        # first camera update in the first step
        self._next_camera_update_step = 0

        # Initialize robot, object and cameras
        # ====================================

        self.simfinger = SimFinger(
            finger_type="trifingerpro",
            time_step=self._time_step,
            enable_visualization=visualization,
        )

        if initial_robot_position is None:
            initial_robot_position = self.spaces.robot_position.default

        self.simfinger.reset_finger_positions_and_velocities(
            initial_robot_position)

        if initial_object_pose is None:
            initial_object_pose = move_cube.Pose(
                position=self.spaces.object_position.default,
                orientation=self.spaces.object_orientation.default,
            )
        self.cube = collision_objects.Block(
            initial_object_pose.position,
            initial_object_pose.orientation,
            mass=0.020,
        )

        self.tricamera = camera.TriFingerCameras()

        # Forward some methods for convenience
        # ====================================
        # forward "RobotFrontend" methods directly to simfinger
        self.Action = self.simfinger.Action
        self.get_desired_action = self.simfinger.get_desired_action
        self.get_applied_action = self.simfinger.get_applied_action
        self.get_timestamp_ms = self.simfinger.get_timestamp_ms
        self.get_current_timeindex = self.simfinger.get_current_timeindex
        self.get_robot_observation = self.simfinger.get_observation

        # forward kinematics directly to simfinger
        self.forward_kinematics = (
            self.simfinger.pinocchio_utils.forward_kinematics)

        # Initialize log
        # ==============
        self._action_log = {
            "initial_robot_position": initial_robot_position.tolist(),
            "initial_object_pose": {
                "position": initial_object_pose.position.tolist(),
                "orientation": initial_object_pose.orientation.tolist(),
            },
            "actions": [],
        }
    def test_step_both(self):
        # Create two instances and send different actions to them.
        # Verify that both go towards their target
        robot1 = SimFinger(finger_type="trifingerpro")
        robot2 = SimFinger(finger_type="trifingerpro")

        start_position = np.array([0.0, 0.7, -1.5] * 3)

        robot1.reset_finger_positions_and_velocities(start_position)
        robot2.reset_finger_positions_and_velocities(start_position)

        action1 = robot1.Action(position=[0.5, 0.7, -1.5] * 3)
        action2 = robot2.Action(position=[-0.5, 0.7, -1.5] * 3)

        for i in range(1000):
            t1 = robot1.append_desired_action(action1)
            t2 = robot2.append_desired_action(action2)
            obs1 = robot1.get_observation(t1)
            obs2 = robot2.get_observation(t2)

            if i > 1:
                self.assertTrue((obs2.position != obs1.position).any())

        self.assertLess(np.linalg.norm(action1.position - obs1.position), 0.1)
        self.assertLess(np.linalg.norm(action2.position - obs2.position), 0.1)
    def test_step_one(self):
        # Create two instances, send actions and step only one.  Verify that
        # the other one does not move.
        robot1 = SimFinger(finger_type="trifingerpro")
        robot2 = SimFinger(finger_type="trifingerpro")

        start_position = np.array([0.0, 0.7, -1.5] * 3)

        robot1.reset_finger_positions_and_velocities(start_position)
        robot2.reset_finger_positions_and_velocities(start_position)

        action = robot1.Action(torque=[0.3, 0.3, 0.3] * 3)

        for i in range(30):
            robot1._set_desired_action(action)
            robot1._step_simulation()
            obs1 = robot1._get_latest_observation()
            obs2 = robot2._get_latest_observation()

            self.assertTrue((start_position != obs1.position).any())
            np.testing.assert_array_equal(start_position, obs2.position)