Exemplo n.º 1
0
def plot_volume_or_prods(start_response, feedtype, host, col):
    """handler."""
    utcnow = datetime.datetime.utcnow() - datetime.timedelta(hours=36)
    since = utcnow.strftime("%Y-%m-%dT%H:%M:%SZ")
    req = requests.get(("http://rtstatstest/services/host/%s/hourly.json"
                        "?feedtype=%s&since=%s") % (host, feedtype, since))
    if req.status_code != 200:
        headers = [("Content-type", "text/plain")]
        start_response("200 OK", headers)
        return [b"API Service Failure..."]

    j = req.json()
    df = pd.DataFrame(j["data"], columns=j["columns"])
    df["valid"] = pd.to_datetime(df["valid"])
    df["path"] = df["origin"] + "_v_" + df["relay"]
    df["nbytes"] /= 1024.0 * 1024.0 * 1024.0  # convert to GiB
    _ = plt.figure(figsize=(11, 7))
    ax = plt.axes([0.1, 0.1, 0.6, 0.8])
    pdf = df[["valid", "path", col]].pivot("valid", "path", col)
    pdf = pdf.fillna(0)
    floor = np.zeros(len(pdf.index))
    colors = plt.get_cmap("rainbow")(np.linspace(0, 1, len(pdf.columns)))
    for i, path in enumerate(pdf.columns):
        tokens = path.split("_v_")
        lbl = "%s\n-> %s" % (tokens[0], tokens[1])
        if tokens[0] == tokens[1]:
            lbl = "%s [SRC]" % (tokens[0], )
        ax.bar(
            pdf.index.values,
            pdf[path].values,
            width=1 / 24.0,
            bottom=floor,
            fc=colors[i],
            label=lbl,
            align="center",
        )
        floor += pdf[path].values
    ax.legend(bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.0, fontsize=12)
    ax.set_ylabel("GiB" if col == "nbytes" else "Number of Products")
    fancy_labels(ax)
    ax.set_title(("%s [%s]\n%s through %s UTC") % (
        host,
        feedtype,
        df["valid"].min().strftime("%Y%m%d/%H%M"),
        df["valid"].max().strftime("%Y%m%d/%H%M"),
    ))
    ax.grid(True)
    headers = [("Content-type", "image/png")]
    start_response("200 OK", headers)

    bio = BytesIO()
    plt.savefig(bio)
    bio.seek(0)
    return [bio.read()]
Exemplo n.º 2
0
def handle_volume_stats_plot(start_response, hostname, period):
    """handler."""
    headers = [("Content-type", "image/png")]
    start_response("200 OK", headers)
    req = requests.get(("http://rtstatstest/services/host/%s/"
                        "%s.json") % (hostname, period))
    if req.status_code != 200:
        return [b"API Service Failure..."]
    j = req.json()
    df = pd.DataFrame(j["data"], columns=j["columns"])
    df["nbytes"] /= 1024 * 1024
    df["valid"] = pd.to_datetime(df["valid"])
    _ = plt.figure(figsize=(11, 7))
    ax = plt.axes([0.1, 0.1, 0.6, 0.8])
    gdf = (df[["valid", "feedtype", "nbytes"]].groupby(["valid",
                                                        "feedtype"]).sum())
    gdf.reset_index(inplace=True)
    pdf = gdf.pivot("valid", "feedtype", "nbytes")
    pdf = pdf.fillna(0)
    floor = np.zeros(len(pdf.index))
    colors = plt.get_cmap("rainbow")(np.linspace(0, 1, len(pdf.columns)))
    for i, feedtype in enumerate(pdf.columns):
        ec = colors[i] if period == "hourly" else "k"
        ax.bar(
            pdf.index.values,
            pdf[feedtype].values,
            width=1 / 24.0,
            bottom=floor,
            fc=colors[i],
            ec=ec,
            label=feedtype,
            align="center",
        )
        floor += pdf[feedtype].values

    ax.legend(bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.0, fontsize=12)
    ax.set_title(("%s\n%s to %s UTC") % (
        hostname,
        df["valid"].min().strftime("%Y%m%d/%H%M"),
        df["valid"].max().strftime("%Y%m%d/%H%M"),
    ))
    ax.grid(True)
    fancy_labels(ax)
    ax.set_ylabel("Data Volume [MiB]")
    headers = [("Content-type", "image/png")]
    start_response("200 OK", headers)

    bio = BytesIO()
    plt.savefig(bio)
    bio.seek(0)
    return [bio.read()]
Exemplo n.º 3
0
def plot_latency(start_response, feedtype, host, logopt):
    """handler."""
    req = requests.get(
        ("http://rtstatstest/services/host/%s/rtstats.json") % (host, ))
    if req.status_code != 200:
        headers = [("Content-type", "text/plain")]
        start_response("200 OK", headers)
        return [b"API Service Failure..."]

    j = req.json()
    df = pd.DataFrame(j["data"], columns=j["columns"])
    df = df[df["feedtype"] == feedtype]
    df["entry_added"] = pd.to_datetime(df["entry_added"])
    _ = plt.figure(figsize=(11, 7))
    ax = plt.axes([0.1, 0.1, 0.6, 0.8])
    for _, grp in df.groupby("feedtype_path_id"):
        row = grp.iloc[0]
        path = "%s\n-> %s" % (row["origin"], row["relay"])
        ax.plot(grp["entry_added"], grp["avg_latency"], label=path)

    ax.legend(bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.0, fontsize=12)
    ax.set_title(("%s [%s]\n%s to %s UTC") % (
        host,
        feedtype,
        df["entry_added"].min().strftime("%Y%m%d/%H%M"),
        df["entry_added"].max().strftime("%Y%m%d/%H%M"),
    ))
    ax.grid(True)
    if logopt.upper() == "LOG":
        ax.set_yscale("log")
    fancy_labels(ax)
    ax.set_ylabel("Average Latency [s]")
    headers = [("Content-type", "image/png")]
    start_response("200 OK", headers)
    bio = BytesIO()
    plt.savefig(bio)
    bio.seek(0)
    return [bio.read()]
Exemplo n.º 4
0
def plot_volume_long(start_response, feedtype, host, period, col="nbytes"):
    """handler."""
    service = "hourly"
    barwidth = 1 / 24.0
    if period == "-b%2086400":
        service = "daily"
        barwidth = 1.0
    elif period == "-b%20604800":
        service = "weekly"
        barwidth = 7.0
    sys.stderr.write(repr(period))
    req = requests.get(("http://rtstatstest/services/host/%s/%s.json"
                        "?feedtype=%s") % (host, service, feedtype))
    if req.status_code != 200:
        headers = [("Content-type", "text/plain")]
        start_response("200 OK", headers)
        return [b"API Service Failure..."]

    j = req.json()
    df = pd.DataFrame(j["data"], columns=j["columns"])
    df["valid"] = pd.to_datetime(df["valid"])
    df["path"] = df["origin"] + "_v_" + df["relay"]
    df["nbytes"] /= 1024.0 * 1024.0 * 1024.0  # convert to GiB
    fig = plt.figure(figsize=(11, 7))
    ax = plt.axes([0.1, 0.1, 0.6, 0.8])
    pdf = df[["valid", "path", col]].pivot("valid", "path", col)
    pdf = pdf.fillna(0)
    floor = np.zeros(len(pdf.index))
    colors = plt.get_cmap("rainbow")(np.linspace(0, 1, len(pdf.columns)))
    for i, path in enumerate(pdf.columns):
        tokens = path.split("_v_")
        lbl = "%s\n-> %s" % (tokens[0], tokens[1])
        if tokens[0] == tokens[1]:
            lbl = "%s [SRC]" % (tokens[0], )
        ax.bar(
            pdf.index.values,
            pdf[path].values,
            width=barwidth,
            bottom=floor,
            fc=colors[i],
            ec=colors[i],
            label=lbl,
            align="center",
        )
        floor += pdf[path].values
    ax.legend(bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.0, fontsize=12)
    ax.set_ylabel("GiB" if col == "nbytes" else "Number of Products")
    fancy_labels(ax)
    ax.set_title(("%s [%s]\n%s through %s UTC") % (
        host,
        feedtype,
        df["valid"].min().strftime("%Y%m%d/%H%M"),
        df["valid"].max().strftime("%Y%m%d/%H%M"),
    ))
    ax.grid(True)
    fig.text(0.01, 0.01,
             "Backend JSON timing: %.2fs" % (j["query_time[secs]"], ))
    headers = [("Content-type", "image/png")]
    start_response("200 OK", headers)
    bio = BytesIO()
    plt.savefig(bio)
    bio.seek(0)
    return [bio.read()]