Exemplo n.º 1
0
def getRR(first=272000,
          last=326000,
          tkr_IN=True,
          tkr_strip_status='GOOD',
          tkr_pix_status='GOOD',
          name='UL',
          cl='Collisions'):
    runs = runregistry.get_datasets(
        filter={
            'run_number': {
                'and': [{
                    '>': first
                }, {
                    '<': last
                }]
            },
            'tracker_included': tkr_IN,
            'tracker-strip': tkr_strip_status,
            #'tracker-pixel': tkr_pix_status,
            'class': {
                'like': '%{}%'.format(cl)
            },
            'dataset_name': {
                'like': '%{}%'.format(name)
            },
        })

    return runs
Exemplo n.º 2
0
    def get_runs_by_list(self, list_of_run_numbers):
        """
        Get list of run dictionaries from the Tracker workspace in the Run Registry

        Example:
        >>> client = TrackerRunRegistryClient()
        >>> runs = client.get_runs_by_list(["323423"])
        >>> runs[0]["state"]
        'COMPLETED'

        :param list_of_run_numbers: list of run numbers
        :return: dictionary containing the queryset
        """
        if not list_of_run_numbers:
            return []

        runs = runregistry.get_datasets(
            filter={
                'run_number': {
                    'or': list_of_run_numbers
                },
                'dataset_name': {
                    'notlike': '%online%'
                }
            })

        return runs
Exemplo n.º 3
0
def retrieve_dataset(run_number):
    datasets = runregistry.get_datasets(
        filter={'run_number': {
            '=': run_number
        }})

    for dataset in datasets:
        if "online" not in dataset["name"]:
            if not TrackerCertification.objects.filter(
                    runreconstruction__run__run_number=run_number,
                    runreconstruction__reconstruction=get_reco_from_dataset(
                        dataset["name"])).exists():
                return dataset["name"]
    if len(datasets) != 0:
        raise Exception("No available datasets for run {}".format(run_number))
    else:
        raise Exception("Run {} has been fully certified".format(run_number))
Exemplo n.º 4
0
def get_dataset_name(run_id,
                     keyword=express_2017_settings.KEYWORD_FOR_PULLED_LABEL):
    dataset_informations = rr.get_datasets(filter={'run_number': run_id})
    if run_id not in dataset_name_cache:
        try:
            dataset_name_cache[run_id] = tuple(
                map(
                    lambda x: x['name'],
                    filter(
                        lambda x: express_2017_settings.
                        KEYWORD_FOR_PULLED_LABEL in x['name'],
                        dataset_informations)))[0]
            print(run_id, dataset_name_cache[run_id])
        except IndexError:
            print("!! There is no dataset_name for selected keywork '{}' !!".
                  format(express_2017_settings.KEYWORD_FOR_PULLED_LABEL))
            exit()
    return dataset_name_cache[run_id]
Exemplo n.º 5
0
def retrieve_dataset_by_reco(run_number, reco):
    datasets = runregistry.get_datasets(
        filter={'run_number': {
            '=': run_number
        }})

    for dataset in datasets:
        if reco in dataset["name"].lower():
            return dataset["name"]

        if reco == "rereco":
            if reco in dataset["name"].lower() and "UL" not in dataset["name"]:
                return dataset["name"]

        if reco == "rerecoul":
            if "rereco" in dataset["name"].lower() and "UL" in dataset["name"]:
                return dataset["name"]

    raise Exception("Could not find reconstruction:{} for run {}".format(
        reco, run_number))
Exemplo n.º 6
0
def get_dataset_name(recon_name="PromptReco", run_id=None):
    dataset_name_cache_key = "%s___%s" % (recon_name, run_id)
    if dataset_name_cache_key in dataset_name_cache:
        # print("Yay, found %s" % (dataset_name_cache_key))
        return dataset_name_cache[dataset_name_cache_key]

    if recon_name in regex_cache:
        r = regex_cache[recon_name]
    else:
        r = re.compile(".*{}".format(recon_name))
        regex_cache[recon_name] = r

    dataset_informations = rr.get_datasets(filter={'run_number': int(run_id)})
    dataset_names = list(map(lambda x: x['name'], dataset_informations))
    prompt_reco_dataset = list(filter(r.match, dataset_names))
    if len(prompt_reco_dataset) > 1:
        raise PromptRecoDatasetNotUniqueError

    dataset_name_cache[dataset_name_cache_key] = prompt_reco_dataset[0]
    return prompt_reco_dataset[0]
Exemplo n.º 7
0
def get_datasets_of_runs(runs, user):
    for run in runs:
        datasets = runregistry.get_datasets(
            filter={
                'run_number': {
                    '=': run["run_number"]
                },
                'global_state': {
                    '=': 'OPEN'
                },
            })

        today = timezone.now().strftime("%Y-%m-%d")

        run_check = OpenRuns.objects.filter(run_number=run["run_number"])
        if not run_check.exists():
            dataset_express = ""
            dataset_prompt = ""
            dataset_rereco = ""
            dataset_rereco_ul = ""
            state_express = ""
            state_prompt = ""
            state_rereco = ""
            state_rereco_ul = ""
            for dataset in datasets:
                if "express" in dataset["name"].lower():
                    dataset_express = dataset["name"]
                    state_express = dataset["dataset_attributes"][
                        "global_state"] if "global_state" in dataset[
                            "dataset_attributes"] else "SIGNOFF"
                elif "prompt" in dataset["name"].lower():
                    dataset_prompt = dataset["name"]
                    state_prompt = dataset["dataset_attributes"][
                        "global_state"] if "global_state" in dataset[
                            "dataset_attributes"] else "SIGNOFF"
                elif "rereco" in dataset["name"].lower(
                ) and "UL" in dataset["name"]:
                    dataset_rereco_ul = dataset["name"]
                    state_rereco_ul = dataset["dataset_attributes"][
                        "global_state"] if "global_state" in dataset[
                            "dataset_attributes"] else "SIGNOFF"
                elif "rereco" in dataset["name"].lower():
                    dataset_rereco = dataset["name"]
                    state_rereco = dataset["dataset_attributes"][
                        "global_state"] if "global_state" in dataset[
                            "dataset_attributes"] else "SIGNOFF"

            if dataset_express != "" or dataset_prompt != "" or dataset_rereco != "" or dataset_rereco_ul != "":
                OpenRuns.objects.create(run_number=run["run_number"],
                                        dataset_express=dataset_express,
                                        user=user,
                                        state_express=state_express,
                                        date_retrieved=today)
                OpenRuns.objects.filter(run_number=run["run_number"]).update(
                    dataset_prompt=dataset_prompt, state_prompt=state_prompt)
                OpenRuns.objects.filter(run_number=run["run_number"]).update(
                    dataset_rereco=dataset_rereco, state_rereco=state_rereco)
                OpenRuns.objects.filter(run_number=run["run_number"]).update(
                    dataset_rereco_ul=dataset_rereco_ul,
                    state_rereco_ul=state_rereco_ul)
        else:
            run_check.update(date_retrieved=today)
for run in sorted_runs:
    run_num = run['run_number']
    dataset_str = ''
    ntriggers = run['oms_attributes']['l1_triggers_counter']
    ls_good = 0
    ls_tot = 0
    pixel_flag = 'NOTSET'
    strip_flag = 'NOTSET'
    tracking_flag = 'NOTSET'

    datasets = runregistry.get_datasets(
        filter={
            'run_number': run_num,
            'class': {
                'like': '%Collisions%'
            },
            'dataset_name': {
                'like': '%' + stream + '%'
            }
        })
    ndat = len(datasets)
    if ndat != 1:
        if ndat == 0:
            print('>> No dataset found for the run ' + str(run_num) +
                  ' !! Skipping it.')
        if ndat > 1:
            print('>> Several datasets found for the run ' + str(run_num) +
                  ' !! Skipping it.')
            print('>> The list is : ')
            for dataset in datasets:
                print('>>   ', dataset['name'])