'startX': "stationary" }) fitinfo = rw.Fitinfo({ 'startGraph': "windowgraph_valid", 'followtype': "avg", 'record': False, 'recorddir': "records/", 'prune_limit': 100, 'triangle_limit': 100, 'other_limit': 100 }) toygraph = rw.Toygraphs({ 'graphtype': "steyvers", 'numnodes': 50, 'numlinks': 6 }) fh = open('priming_test.csv', 'w') seed = 15 for td in toydata: print "numx: ", td.numx # generate data with priming and fit best graph g, a = rw.genG(toygraph, seed=seed) [Xs, irts, alter_graph] = rw.genX(g, td, seed=seed) bestgraph_priming, ll = rw.uinvite(Xs, td, toygraph.numnodes,
fitinfo=rw.Fitinfo({ 'startGraph': "windowgraph_valid", 'windowgraph_size': 2, 'windowgraph_threshold': 2, 'followtype': "avg", 'prior_samplesize': 10000, 'recorddir': "records/", 'directed': True, 'prune_limit': np.inf, 'triangle_limit': np.inf, 'other_limit': np.inf}) toygraphs=rw.Toygraphs({ 'numgraphs': 1, 'graphtype': "steyvers", 'numnodes': 280, 'numlinks': 6, 'prob_rewire': .3}) irts=rw.Irts({ 'data': [], 'irttype': "exgauss", 'lambda': 0.721386887, 'sigma': 6.58655566, 'irt_weight': 0.95, 'rcutoff': 20}) # USF prior #usfnet, usfitems = rw.read_csv('./snet/USF_animal_subset.snet') #priordict = rw.genGraphPrior([usfnet], [usfitems])
import rw import math # double check number of nodes is correct graph = rw.Toygraphs({ 'graphtype': "smallworld", 'numnodes': 50, 'numlinks': 4, 'probRewire': .3 }) prior = rw.genSWPrior( graph) # same vals used in generating test_case_prior.csv outfile = open('swvals3.csv', 'w') with open('test_case_prior2.csv', 'r') as fh: next(fh) # skip header row for line in fh: line = line.split(',') tg = rw.hashToGraph(line[10]) # true graph nrw = rw.hashToGraph(line[14]) # naive random walk uinp = rw.hashToGraph(line[22]) # u-invite no prior uip = rw.hashToGraph(line[30]) # u-invite w/ prior numx = str(line[7]) outfile.write(numx + ',') outfile.write( str(math.log(rw.evalSWPrior(rw.smallworld(tg), prior))) + ',') outfile.write(