Exemplo n.º 1
0
def _setup_s2mm_cuda_kernel(nbatch, nspec, nfeature_in, nfeature_out):
    kernel = Template('''
#define COMPUTE_LMN(s) \
    int l = powf(3.0/4.0 * s, 1.0/3.0) - 0.5; \
    int L = l * (4 * l * l - 1) / 3; \
    int rest = s - L; \
    if (rest >= (2 * l + 1) * (2 * l + 1)) { \
        ++l; \
        L = l * (4 * l * l - 1) / 3; \
        rest = s - L; \
    } \
    int m = rest / (2 * l + 1) - l; \
    int n = rest % (2 * l + 1) - l;

#define EXTRACT(i1, i2, n2, i3, n3) \
    int i1 = index; \
    int i3 = i1 % (n3);  i1 /= n3; \
    int i2 = i1 % (n2);  i1 /= n2;

#define CONTRACT1(s1, i2, n2, i3, n3) \
    (  ( (l * l + (l + (s1))) * (n2) + (i2) ) * (n3) + (i3)  )

#define CONTRACT2(s1, s2, i2, n2, i3, n3) \
    (  ( (L + (l + (s1)) * (2 * l + 1) + (l + (s2))) * (n2) + (i2) ) * (n3) + (i3)  )

extern "C"
__global__ void main_(const float* in_x, const float* in_y, float* out) {
    for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < ${nspec} * ${nbatch} * ${nfeature_out}; index += blockDim.x * gridDim.x) {
        EXTRACT(s, i, ${nbatch}, f_out, ${nfeature_out})

        // compute s -> (l,m,n)
        COMPUTE_LMN(s)

        float out_re = 0.0;
        float out_im = 0.0;

        for (int f_in = 0; f_in < ${nfeature_in}; ++f_in) {
            float x_re = in_x[CONTRACT1(m, i,    ${nbatch},      f_in,  ${nfeature_in} ) * 2 + 0];
            float x_im = in_x[CONTRACT1(m, i,    ${nbatch},      f_in,  ${nfeature_in} ) * 2 + 1];
            float y_re = in_y[CONTRACT1(n, f_in, ${nfeature_in}, f_out, ${nfeature_out}) * 2 + 0];
            float y_im = in_y[CONTRACT1(n, f_in, ${nfeature_in}, f_out, ${nfeature_out}) * 2 + 1];

            // x times y conjugate
            out_re += x_re * y_re + x_im * y_im;
            out_im += x_im * y_re - x_re * y_im;
        }

        out[index * 2 + 0] = out_re;
        out[index * 2 + 1] = out_im;
    }
}
''').substitute({
        'nbatch': nbatch,
        'nspec': nspec,
        'nfeature_in': nfeature_in,
        'nfeature_out': nfeature_out
    })

    import s2cnn.utils.cuda as cuda_utils
    return cuda_utils.compile_kernel(kernel, b's2mm.cu', 'main_')
Exemplo n.º 2
0
def _setup_s2ifft_cuda_kernel(b, nl, nbatch, device=0):
    kernel = Template('''
extern "C"
__global__ void main_(const float* in, const float* wig, float* out) {
    for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < ${nbatch} * 2 * ${b} * 2 * ${b}; index += blockDim.x * gridDim.x) {
        int i = index / (2 * ${b} * 2 * ${b}); // batch index
        int beta = (index / (2 * ${b})) % (2 * ${b});
        int m = index % (2 * ${b});

        // from 0,1,2, 3, 4   or  0,1,2, 3, 4, 5
        // to   0,1,2,-2,-1   or  0,1,2,-3,-2,-1
        int mm = m <= (2 * ${b} - 1) / 2 ? m : m - 2 * ${b};

        float out_re = 0.0;
        float out_im = 0.0;

        for (int l = abs(mm); l < ${nl}; ++l) {
            int s = l * l + (l + mm);

            float in_re = in[(s * ${nbatch} + i) * 2 + 0];
            float in_im = in[(s * ${nbatch} + i) * 2 + 1];
            float w = wig[beta * ${nspec} + s];

            out_re += in_re * w;
            out_im += in_im * w;
        }

        out[index * 2 + 0] = out_re;
        out[index * 2 + 1] = out_im;
    }
}
''').substitute({'b': b, 'nbatch': nbatch, 'nl': nl, 'nspec': nl ** 2})

    import s2cnn.utils.cuda as cuda_utils
    return cuda_utils.compile_kernel(kernel, 's2ifft.cu', 'main_')
Exemplo n.º 3
0
def _setup_s2fft_cuda_kernel(b, nspec, nbatch, device=0):
    kernel = Template('''
#define COMPUTE_LM(s) \
    int l = powf(s, 0.5); \
    int m = (s - l * l) - l;

#define MOD(i, n) (((i) + (n)) % (n))

extern "C"
__global__ void main_(const float* in, const float* wig, float* out) {
    for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < ${nspec} * ${nbatch}; index += blockDim.x * gridDim.x) {
        int i = index % ${nbatch}; // batch index
        int s = index / ${nbatch}; // spectral index

        // compute s -> (l,m)
        COMPUTE_LM(s)

        float out_re = 0.0;
        float out_im = 0.0;
        for (int beta = 0; beta < 2 * ${b}; ++beta) {
            float in_re = in[((i * 2 * ${b} + beta) * 2 * ${b} + MOD(m, 2 * ${b})) * 2 + 0];
            float in_im = in[((i * 2 * ${b} + beta) * 2 * ${b} + MOD(m, 2 * ${b})) * 2 + 1];
            float w = wig[beta * ${nspec} + s];

            out_re += w * in_re;
            out_im += w * in_im;
        }
        out[index * 2 + 0] = out_re;
        out[index * 2 + 1] = out_im;
    }
}
''').substitute({'b': b, 'nbatch': nbatch, 'nspec': nspec})

    import s2cnn.utils.cuda as cuda_utils
    return cuda_utils.compile_kernel(kernel, 's2fft.cu', 'main_')
Exemplo n.º 4
0
def _setup_s2mm_grady_cuda_kernel(nbatch, nspec, nl, nfeature_in,
                                  nfeature_out):
    kernel = Template('''
#define COMPUTE_LM(s) \
    int l = powf(s, 0.5); \
    int L = (4 * l * l - 1) * l / 3; \
    int m = s - l * l - l;

#define EXTRACT(i1, i2, n2, i3, n3) \
    int i1 = index; \
    int i3 = i1 % (n3);  i1 /= n3; \
    int i2 = i1 % (n2);  i1 /= n2;

#define CONTRACT1(s1, i2, n2, i3, n3) \
    (  ( (l * l + (l + (s1))) * (n2) + (i2) ) * (n3) + (i3)  )

#define CONTRACT2(s1, s2, i2, n2, i3, n3) \
    (  ( (L + (l + (s1)) * (2 * l + 1) + (l + (s2))) * (n2) + (i2) ) * (n3) + (i3)  )

extern "C"
__global__ void main_(const float* grad_z, const float* x, float* grad_y) {
    for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < (${nl} * ${nl}) * ${nfeature_in} * ${nfeature_out}; index += blockDim.x * gridDim.x) {
        EXTRACT(s, f_in, ${nfeature_in}, f_out, ${nfeature_out})

        // compute s -> (l,m)
        COMPUTE_LM(s)

        float out_re = 0.0;
        float out_im = 0.0;

        for (int i = 0; i < ${nbatch}; ++i) {
            for (int k = -l; k <= l; ++k) {
                float grad_z_re = grad_z[CONTRACT2(k, m, i, ${nbatch}, f_out, ${nfeature_out}) * 2 + 0];
                float grad_z_im = grad_z[CONTRACT2(k, m, i, ${nbatch}, f_out, ${nfeature_out}) * 2 + 1];
                float x_re =           x[CONTRACT1(k,    i, ${nbatch}, f_in,  ${nfeature_in} ) * 2 + 0];
                float x_im =           x[CONTRACT1(k,    i, ${nbatch}, f_in,  ${nfeature_in} ) * 2 + 1];

                // conjugate grad_z times x
                out_re += grad_z_re * x_re + grad_z_im * x_im;
                out_im += grad_z_re * x_im - grad_z_im * x_re;
            }
        }

        grad_y[index * 2 + 0] = out_re;
        grad_y[index * 2 + 1] = out_im;
    }
}
''').substitute({
        'nbatch': nbatch,
        'nspec': nspec,
        'nl': nl,
        'nfeature_in': nfeature_in,
        'nfeature_out': nfeature_out
    })

    import s2cnn.utils.cuda as cuda_utils
    return cuda_utils.compile_kernel(kernel, b's2mm_grady.cu', 'main_')
Exemplo n.º 5
0
def _setup_so3ifft_cuda_kernel(b_in, b_out, nbatch, real_output, device=0):
    kernel = '''
#define B_IN {}
#define B_OUT {}
#define NSPEC {}
#define NBATCH {}
'''.format(b_in, b_out, b_in * (4 * b_in ** 2 - 1) // 3, nbatch)

    if real_output:
        kernel += '''
#define REAL_OUT
'''

    kernel += '''
#define MOD(i, n) (((i) + (n)) % (n))
#define MAX(x, y) ((x) < (y) ? (y) : (x))
#define CEIL_DIV(x, y) (((x) + (y) - 1) / (y))

extern "C"
__global__ void main_(const float* in, const float* wig, float* out)
{
    int m = (blockIdx.z / (2 * B_OUT - 1)) - (B_OUT - 1);
    int n = (blockIdx.z % (2 * B_OUT - 1)) - (B_OUT - 1);

#ifdef REAL_OUT
    if (n < 0 || (n == 0 && m < 0)) {
        return; // note: this return does not depend on threadIdx
    }
#endif

    int l_min = MAX(abs(m), abs(n));

    int batch = blockIdx.y * 32 + threadIdx.y;

    float sum_re = 0.0;
    float sum_im = 0.0;

    for (int tile = 0; tile < CEIL_DIV(B_IN - l_min, 32); ++tile) {
        __shared__ float tileA[2][32][32];
        __shared__ float tileB[32][32+1];

        int l = l_min + tile * 32 + threadIdx.x;
        int lmn = (4 * l*l - 1) * l / 3 + (l+m) * (2 * l + 1) + (l+n);
        int i = (lmn * NBATCH + batch) * 2;
        tileA[0][threadIdx.y][threadIdx.x] = l < B_IN && batch < NBATCH ? in[i + 0] : 0.0;
        tileA[1][threadIdx.y][threadIdx.x] = l < B_IN && batch < NBATCH ? in[i + 1] : 0.0;

        int beta = blockIdx.x * 32 + threadIdx.y;
        tileB[threadIdx.x][threadIdx.y] = l < B_IN && beta < 2*B_OUT ? wig[beta * NSPEC + lmn] : 0.0;

        __syncthreads();

        for (int l = 0; l < 32; ++l) {
            sum_re += tileA[0][threadIdx.y][l] * tileB[l][threadIdx.x];
            sum_im += tileA[1][threadIdx.y][l] * tileB[l][threadIdx.x];
        }

        __syncthreads();
    }

    int beta = blockIdx.x * 32 + threadIdx.x;

    if (beta < 2*B_OUT && batch < NBATCH) {
        int i = (((batch * 2*B_OUT + beta) * 2*B_OUT + MOD(m, 2*B_OUT)) * 2*B_OUT + MOD(n, 2*B_OUT)) * 2;
        out[i + 0] = sum_re;
        out[i + 1] = sum_im;

#ifdef REAL_OUT
        i = (((batch * 2*B_OUT + beta) * 2*B_OUT + MOD(-m, 2*B_OUT)) * 2*B_OUT + MOD(-n, 2*B_OUT)) * 2;
        out[i + 0] = sum_re;
        out[i + 1] = -sum_im;
#endif
    }
}
'''
    import s2cnn.utils.cuda as cuda_utils
    kernel = cuda_utils.compile_kernel(kernel, 'so3ifft.cu', 'main_')
    stream = cuda_utils.Stream(ptr=torch.cuda.current_stream().cuda_stream)

    def fun(x, wigner, output):
        output[:] = 0
        kernel(block=(32, 32, 1),
               grid=(math.ceil(2 * b_out / 32), math.ceil(nbatch / 32), (2 * b_out - 1) ** 2),
               args=[x.data_ptr(), wigner.data_ptr(), output.data_ptr()],
               stream=stream)

    return fun
Exemplo n.º 6
0
def _setup_so3fft_cuda_kernel(b_in, b_out, nbatch, real_input, device=0):
    kernel = '''
#define B_IN {}
#define B_OUT {}
#define NSPEC {}
#define NBATCH {}
'''.format(b_in, b_out, b_out * (4 * b_out ** 2 - 1) // 3, nbatch)

    if real_input:
        kernel += '''
#define REAL_IN
'''

    kernel += '''
#define MOD(i, n) (((i) + (n)) % (n))
#define MAX(x, y) ((x) < (y) ? (y) : (x))
#define CEIL_DIV(x, y) (((x) + (y) - 1) / (y))

extern "C"
__global__ void main_(const float* in, const float* wig, float* out)
{
    // blockIdx = (l, batch, mn)
    // blockDim = (32, 32, 1)
    // threadIdx = (sub l, sub batch, 0)
    // gridDim = (b / 32, nbatch / 32, (2b-1)**2)
    int m = (blockIdx.z / (2 * B_OUT - 1)) - (B_OUT - 1);
    int n = (blockIdx.z % (2 * B_OUT - 1)) - (B_OUT - 1);

    int l_min = MAX(abs(m), abs(n));

    if (blockIdx.x * 32 + 31 < l_min) {
        // for blocks fully out of l-range
        return; // note: this return does not depend on threadIdx
    }

#ifdef REAL_IN
    if (n < 0 || (n == 0 && m < 0)) {
        return; // note: this return does not depend on threadIdx
    }
#endif

    int batch = blockIdx.y * 32 + threadIdx.y;
    int l = blockIdx.x * 32 + threadIdx.x;

    int lmn = (4 * l*l - 1) * l / 3 + (l+m) * (2 * l + 1) + (l+n);

    float sum_re = 0.0;
    float sum_im = 0.0;

    for (int tile = 0; tile < CEIL_DIV(2 * B_IN, 32); ++tile) {
        __shared__ float tileA[32][32][2];
        __shared__ float tileB[32][32];

        int beta = tile * 32 + threadIdx.x;
#ifdef REAL_IN
        // `in` shape is (NBATCH, 2 * B_IN, 2 * B_IN, B_IN + 1, 2)
        // http://www.fftw.org/fftw3_doc/Multi_002dDimensional-DFTs-of-Real-Data.html
        int i = (((batch * 2*B_IN + beta) * 2*B_IN + MOD(m, 2*B_IN)) * (B_IN + 1) + n) * 2;
#else
        int i = (((batch * 2*B_IN + beta) * 2*B_IN + MOD(m, 2*B_IN)) * 2*B_IN + MOD(n, 2*B_IN)) * 2;
#endif
        tileA[threadIdx.y][threadIdx.x][0] = beta < 2*B_IN && batch < NBATCH ? in[i + 0] : 0.0;
        tileA[threadIdx.y][threadIdx.x][1] = beta < 2*B_IN && batch < NBATCH ? in[i + 1] : 0.0;

        beta = tile * 32 + threadIdx.y;
        tileB[threadIdx.y][threadIdx.x] = beta < 2*B_IN && l_min <= l && l < B_OUT ? wig[beta * NSPEC + lmn] : 0.0;

        __syncthreads();

        for (int beta = 0; beta < 32; ++beta) {
            sum_re += tileA[threadIdx.y][beta][0] * tileB[beta][threadIdx.x];
            sum_im += tileA[threadIdx.y][beta][1] * tileB[beta][threadIdx.x];
        }

        __syncthreads();
    }

    // About this if: some blocks are used to compute but not to save the results
    if (l_min <= l && l < B_OUT && batch < NBATCH) {
        out[(lmn * NBATCH + batch) * 2 + 0] = sum_re;
        out[(lmn * NBATCH + batch) * 2 + 1] = sum_im;

#ifdef REAL_IN
        lmn = (4 * l*l - 1) * l / 3 + (l-m) * (2 * l + 1) + (l-n);
        float fudge = (m - n) % 2 == 0 ? 1.0 : -1.0;
        out[(lmn * NBATCH + batch) * 2 + 0] = fudge * sum_re;
        out[(lmn * NBATCH + batch) * 2 + 1] = -fudge * sum_im;
#endif
    }
}
'''
    import s2cnn.utils.cuda as cuda_utils
    kernel = cuda_utils.compile_kernel(kernel, 'so3fft.cu', 'main_')
    stream = cuda_utils.Stream(ptr=torch.cuda.current_stream().cuda_stream)

    def fun(x, wigner, output):
        assert output.is_contiguous()
        kernel(block=(32, 32, 1),
               grid=(math.ceil(b_out / 32), math.ceil(nbatch / 32), (2 * b_out - 1) ** 2),
               args=[x.contiguous().data_ptr(), wigner.contiguous().data_ptr(), output.data_ptr()],
               stream=stream)

    return fun
Exemplo n.º 7
0
def _setup_so3mm_cuda_kernel(nl,
                             ni,
                             nj,
                             nk,
                             conj_x=False,
                             conj_y=False,
                             trans_x_spec=False,
                             trans_x_feature=False,
                             trans_y_spec=False,
                             trans_y_feature=False,
                             trans_out_feature=False,
                             device=0):
    '''
    return a function that computes
        out[l*m*n, i, j] = sum_k sum_p x[l*m*p, i, k] y[l*p*n, k, j]
    where out, x, y are complex valued

    if conj_x is set to True, x is conjugated
    if conj_y is set to True, y is conjugated
    if trans_x_spec is set to True m and p are permuted in x[...]
    if trans_y_spec is set to True p and n are permuted in y[...]
    if trans_x_feature is set to True i and k are permuted in x[...]
    if trans_y_feature is set to True k and j are permuted in y[...]
    if trans_out_feature is set to True i and j are permuted in out[...]
    '''

    kernel = '''
#define NI {}
#define NJ {}
#define NK {}
'''.format(ni, nj, nk)

    if not trans_x_spec and not trans_x_feature:
        kernel += '#define INDEX_X (((L0 + m * L + p) * NI + i) * NK + k)\n'
    if not trans_x_spec and trans_x_feature:
        kernel += '#define INDEX_X (((L0 + m * L + p) * NK + k) * NI + i)\n'
    if trans_x_spec and not trans_x_feature:
        kernel += '#define INDEX_X (((L0 + p * L + m) * NI + i) * NK + k)\n'
    if trans_x_spec and trans_x_feature:
        kernel += '#define INDEX_X (((L0 + p * L + m) * NK + k) * NI + i)\n'

    if not trans_y_spec and not trans_y_feature:
        kernel += '#define INDEX_Y (((L0 + p * L + n) * NK + k) * NJ + j)\n'
    if not trans_y_spec and trans_y_feature:
        kernel += '#define INDEX_Y (((L0 + p * L + n) * NJ + j) * NK + k)\n'
    if trans_y_spec and not trans_y_feature:
        kernel += '#define INDEX_Y (((L0 + n * L + p) * NK + k) * NJ + j)\n'
    if trans_y_spec and trans_y_feature:
        kernel += '#define INDEX_Y (((L0 + n * L + p) * NJ + j) * NK + k)\n'

    if not trans_out_feature:
        kernel += '#define INDEX_OUT (((L0 + m * L + n) * NI + i) * NJ + j)\n'
    if trans_out_feature:
        kernel += '#define INDEX_OUT (((L0 + m * L + n) * NJ + j) * NI + i)\n'

    kernel += '''
#define CONJ_X {}
#define CONJ_Y {}
'''.format("x_im = -x_im;" if conj_x else ";",
           "y_im = -y_im;" if conj_y else ";")

    kernel += '''
#define CEIL_DIV(x, y) (((x) + (y) - 1) / (y))

extern "C"
__global__ void main_(const float* in_x, const float* in_y, float* out)
{
    // start of thread independant code
    int l = blockIdx.z;
    int L = 2 * l + 1;
    int L0 = (4 * l*l - 1) * l / 3;

    if (blockIdx.y * 32 >= L * NI || blockIdx.x * 32 >= L * NJ) {
        return;
    }

    int ntile = CEIL_DIV(L * NK, 32);
    // end of thread independant code

    int mi = blockIdx.y * 32 + threadIdx.y;
    int m = mi / NI;
    int i = mi % NI;
    int nj = blockIdx.x * 32 + threadIdx.x;
    int n = nj / NJ;
    int j = nj % NJ;

    float sum_re = 0.0;
    float sum_im = 0.0;

    for (int tile = 0; tile < ntile; ++tile) {
        __shared__ float tileX[2][32][32];
        __shared__ float tileY[2][32][32];

        int pk = tile * 32 + threadIdx.x;
        int p = pk / NK;
        int k = pk % NK;
        int index = INDEX_X * 2;
        tileX[0][threadIdx.y][threadIdx.x] = m < L && p < L ? in_x[index + 0] : 0.0;
        tileX[1][threadIdx.y][threadIdx.x] = m < L && p < L ? in_x[index + 1] : 0.0;

        pk = tile * 32 + threadIdx.y;
        p = pk / NK;
        k = pk % NK;
        index = INDEX_Y * 2;
        tileY[0][threadIdx.y][threadIdx.x] = p < L && n < L ? in_y[index + 0] : 0.0;
        tileY[1][threadIdx.y][threadIdx.x] = p < L && n < L ? in_y[index + 1] : 0.0;

        __syncthreads();

        for (int any = 0; any < 32; ++any) {
            float x_re = tileX[0][threadIdx.y][any];
            float x_im = tileX[1][threadIdx.y][any];
            float y_re = tileY[0][any][threadIdx.x];
            float y_im = tileY[1][any][threadIdx.x];

            CONJ_X
            CONJ_Y

            sum_re += x_re * y_re - x_im * y_im;
            sum_im += x_re * y_im + x_im * y_re;
        }

        __syncthreads();
    }

    if (m < L && n < L) {
        int index = INDEX_OUT * 2;
        out[index + 0] = sum_re;
        out[index + 1] = sum_im;
    }
}
'''
    import s2cnn.utils.cuda as cuda_utils
    kernel = cuda_utils.compile_kernel(kernel, b'so3_mm.cu', 'main_')
    stream = cuda_utils.Stream(ptr=torch.cuda.current_stream().cuda_stream)

    def fun(x, y, output):
        assert output.is_contiguous()
        kernel(block=(32, 32, 1),
               grid=(math.ceil(
                   (2 * nl - 1) * nj / 32), math.ceil(
                       (2 * nl - 1) * ni / 32), nl),
               args=[
                   x.contiguous().data_ptr(),
                   y.contiguous().data_ptr(),
                   output.data_ptr()
               ],
               stream=stream)

    return fun