Exemplo n.º 1
0
def test_simple_randomized_search():
    """Test a simple reandomized search. Start and goal should be
    chosen to be a random, valid GridState because that is
    default behavior when they are not provided. As long as the
    state space is not disconnected, a path should be returned
    and it must include at least the start ang goal
    """
    astar = GenericAstar(env, heuristic=OctileGridHeuristic())
    path = astar.get_path()
    # simplest possible path must include start and goal
    # each should have been chosen for expansion from the open list
    assert astar.nodes_expanded >= 2
    assert len(path) >= 2
Exemplo n.º 2
0
def test_simple_shortest_search():
    """Test a search where the start and goal are neighbors. Ensure
    correct path and open list sizes. Assumes start is in an
    'open area' where all neighbors are valid.
    """
    start = GridState(18, 24, valid=True)
    goal = GridState(19, 24, valid=True)
    astar = GenericAstar(env,
                         heuristic=OctileGridHeuristic(),
                         start=start,
                         goal=goal)
    astar.get_path()
    print(astar.open)
    assert len(astar.path) == 2  # start, goal
    assert astar.nodes_expanded == 2  # start, goal
    assert len(astar.open) == 7  # start + 8 neighbors - start - goal
Exemplo n.º 3
0
def test_undefined_goal():
    """Test all 4 map boundaries <0, >width, <0, >height.
    if unchecked, negatives would index backwards into grid.env[][]
    """
    bad_goal = GridState(-1, env.get_random().y)
    with pytest.raises(StateDoesNotExistError):
        GenericAstar(env, heuristic=OctileGridHeuristic(), goal=bad_goal)
    bad_goal = GridState(env.get_random().x, -1)
    with pytest.raises(StateDoesNotExistError):
        GenericAstar(env, heuristic=OctileGridHeuristic(), goal=bad_goal)
    bad_goal = GridState(env.width + 1, env.get_random().y)
    with pytest.raises(StateDoesNotExistError):
        GenericAstar(env, heuristic=OctileGridHeuristic(), goal=bad_goal)
    bad_goal = GridState(env.get_random().x, env._height + 1)
    with pytest.raises(StateDoesNotExistError):
        GenericAstar(env, heuristic=OctileGridHeuristic(), goal=bad_goal)
Exemplo n.º 4
0
def speed_test(env: Environment,
               search_1: Search.__class__,
               search_2: Search.__class__,
               start: State = None,
               goal: State = None,
               heuristic=None) -> Tuple[float, float]:

    if start is None:
        start = env.get_random(valid=True)

    if goal is None:
        goal = env.get_random(valid=True)

    generic_astar = GenericAstar(env,
                                 heuristic=OctileGridHeuristic(),
                                 start=SearchNode(start),
                                 goal=SearchNode(goal))
    gridopt_astar = GridOptimizedAstar(env,
                                       heuristic=OctileGridHeuristic(),
                                       start=SearchNode(start),
                                       goal=SearchNode(goal))
    if verbose:
        print('\n-----Beginning Speeedtest-----\n')
        print(f'environment: {str(env)}')
        print(f'start: {str(start)}')
        print(f'goal: {str(goal)}')
        print(f'heuristic: {str(OctileGridHeuristic())}')
        print('\nrunning GenericAstar...')
    generic_t1 = time.time()
    generic_astar.get_path()
    generic_t2 = time.time()
    generic_time = generic_t2 - generic_t1
    if verbose:
        print(f'completed in: ' + str(round(generic_time, 2)) + 's')
        print('\nrunning GridOptimizedAstar...')
    gridopt_t1 = time.time()
    gridopt_astar.get_path()
    gridopt_t2 = time.time()
    gridopt_time = gridopt_t2 - gridopt_t1
    if verbose:
        print(f'completed in: ' + str(round(gridopt_time, 2)) + 's')
        print(
            f"\n{'GenericAstar' if generic_time < gridopt_time else 'GridOptimizedAstar'} was faster!"
        )
    if not verbose:
        print(generic_time + ' ' + gridopt_time)
Exemplo n.º 5
0
def get_random_search(
    environment: Environment = env,
    heuristic: Heuristic = OctileGridHeuristic()
) -> GenericAstar:
    start = environment.get_random(valid=True)
    goal = environment.get_random(valid=True)
    gastar = GenericAstar(environment, heuristic, start=start, goal=goal)
    return gastar
def speed_diff():
    filepath = os.path.join(
        os.path.dirname(os.path.dirname(os.path.abspath(__file__))) +
        '/data/maps/large/brc202d.map')
    environment = OctileGrid(filepath)
    start = environment.get_random(valid=True)
    goal = GridState(474, 426)
    generic_astar = GenericAstar(environment,
                                 heuristic=OctileGridHeuristic(),
                                 start=SearchNode(start),
                                 goal=SearchNode(goal),
                                 verbose=True)
    gridopt_astar = GridOptimizedAstar(environment,
                                       heuristic=OctileGridHeuristic(),
                                       start=SearchNode(start),
                                       goal=SearchNode(goal))
    print('\n-----Beginning Speeedtest-----\n')
    print(f'environment: {str(environment)}')
    print(f'start: {str(start)}')
    print(f'goal: {str(goal)}')
    print(f'heuristic: {str(OctileGridHeuristic())}')
    print('\nrunning GenericAstar...')
    generic_t1 = time.time()
    generic_astar.get_path()
    generic_t2 = time.time()
    generic_time = generic_t2 - generic_t1
    print(f'completed in: ' + str(round(generic_time, 2)) + 's')
    print('\nrunning GridOptimizedAstar...')
    gridopt_t1 = time.time()
    gridopt_astar.get_path()
    gridopt_t2 = time.time()
    gridopt_time = gridopt_t2 - gridopt_t1
    print(f'completed in: ' + str(round(gridopt_time, 2)) + 's')

    print(
        f"\n{'GenericAstar' if generic_time < gridopt_time else 'GridOptimizedAstar'} was faster!"
    )
Exemplo n.º 7
0
def test_invalid_goal():
    """Try to create search with goal node that is not passable"""
    bad_goal = env.get_random(valid=False)
    with pytest.raises(StateNotValidError):
        GenericAstar(env, heuristic=OctileGridHeuristic(), goal=bad_goal)
Exemplo n.º 8
0
    def pressed_start(self) -> None:
        if self.start is None or self.goal is None:
            raise Exception('Search started without start / goal')
        search = 'gas'
        if self.app_frame.combo1.get() == 'Generic Dijkstra':
            search = 'gd'
        elif self.app_frame.combo1.get() == 'Grid Optimized Dijkstra':
            search = 'god'
        elif self.app_frame.combo1.get() == 'Grid Optimized A*':
            search = 'goas'
        elif self.app_frame.combo1.get() == 'BFS':
            search = 'bfs'
        elif self.app_frame.combo1.get() == 'DFS':
            search = 'dfs'

        heuristic = OctileGridHeuristic()
        if self.app_frame.combo2.get() == 'Manhattan Distance':
            heuristic = ManhattanGridHeuristic()
        elif self.app_frame.combo2.get() == 'Euclidean Distance':
            heuristic = EuclideanGridHeuristic()
        if not self.env.is_valid(self.start.state):
            raise StateNotValidError(self.start.state)
        else:
            self.start.state._valid = True
        if not self.env.is_valid(self.goal.state):
            raise StateNotValidError(self.goal.state)
        else:
            self.goal.state._valid = True
        if search == 'gas':
            self.search = GenericAstar(self.env,
                                       start=self.start,
                                       goal=self.goal,
                                       heuristic=heuristic,
                                       verbose=self.verbose)
        elif search == 'gd':
            self.search = GenericDijkstra(self.env,
                                          start=self.start,
                                          goal=self.goal,
                                          verbose=self.verbose)
        elif search == 'god':
            self.search = GridOptimizedDijkstra(self.env,
                                                start=self.start,
                                                goal=self.goal,
                                                verbose=self.verbose)
        elif search == 'goas':
            self.search = GridOptimizedAstar(self.env,
                                             start=self.start,
                                             goal=self.goal,
                                             heuristic=heuristic,
                                             verbose=self.verbose)
        elif search == 'bfs':
            self.search = GenericBFS(self.env,
                                     start=self.start,
                                     goal=self.goal,
                                     verbose=self.verbose)
        elif search == 'dfs':
            self.search = GenericDFS(self.env,
                                     start=self.start,
                                     goal=self.goal,
                                     verbose=self.verbose)
        self.draw_initial()
        self.after(1000, self.draw_step)