Exemplo n.º 1
0
 def transform_rec(expr):
     op = expr.operator()
     operands = expr.operands()
     if op:
         new_op = []
         for operand in operands:
             new_op.append(transform_rec(operand))
         if str(op)=='<built-in function pow>':
             return function('pow')(*new_op)
         else:
             return op(*new_op)
     else:
         return expr
Exemplo n.º 2
0
def test_sage_conversions():
    try:
        import sage.all as sage
    except ImportError:
        return

    x, y = sage.SR.var('x y')
    x1, y1 = symbols('x, y')

    # Symbol
    assert x1._sage_() == x
    assert x1 == sympify(x)

    # Integer
    assert Integer(12)._sage_() == sage.Integer(12)
    assert Integer(12) == sympify(sage.Integer(12))

    # Rational
    assert (Integer(1) / 2)._sage_() == sage.Integer(1) / 2
    assert Integer(1) / 2 == sympify(sage.Integer(1) / 2)

    # Operators
    assert x1 + y == x1 + y1
    assert x1 * y == x1 * y1
    assert x1**y == x1**y1
    assert x1 - y == x1 - y1
    assert x1 / y == x1 / y1

    assert x + y1 == x + y
    assert x * y1 == x * y
    # Doesn't work in Sage 6.1.1ubuntu2
    # assert x ** y1 == x ** y
    assert x - y1 == x - y
    assert x / y1 == x / y

    # Conversions
    assert (x1 + y1)._sage_() == x + y
    assert (x1 * y1)._sage_() == x * y
    assert (x1**y1)._sage_() == x**y
    assert (x1 - y1)._sage_() == x - y
    assert (x1 / y1)._sage_() == x / y

    assert x1 + y1 == sympify(x + y)
    assert x1 * y1 == sympify(x * y)
    assert x1**y1 == sympify(x**y)
    assert x1 - y1 == sympify(x - y)
    assert x1 / y1 == sympify(x / y)

    # Functions
    assert sin(x1) == sin(x)
    assert sin(x1)._sage_() == sage.sin(x)
    assert sin(x1) == sympify(sage.sin(x))

    assert cos(x1) == cos(x)
    assert cos(x1)._sage_() == sage.cos(x)
    assert cos(x1) == sympify(sage.cos(x))

    assert function_symbol('f', x1, y1)._sage_() == sage.function('f', x, y)
    assert function_symbol('f', 2 * x1,
                           x1 + y1).diff(x1)._sage_() == sage.function(
                               'f', 2 * x, x + y).diff(x)

    # For the following test, sage needs to be modified
    # assert sage.sin(x) == sage.sin(x1)

    # Constants
    assert pi._sage_() == sage.pi
    assert E._sage_() == sage.e
    assert I._sage_() == sage.I

    assert pi == sympify(sage.pi)
    assert E == sympify(sage.e)

    # SympyConverter does not support converting the following
    # assert I == sympify(sage.I)

    # Matrix
    assert DenseMatrix(1, 2, [x1, y1])._sage_() == sage.matrix([[x, y]])

    # SympyConverter does not support converting the following
    # assert DenseMatrix(1, 2, [x1, y1]) == sympify(sage.matrix([[x, y]]))

    # Sage Number
    a = sage.Mod(2, 7)
    b = PyNumber(a, sage_module)

    a = a + 8
    b = b + 8
    assert isinstance(b, PyNumber)
    assert b._sage_() == a

    a = a + x
    b = b + x
    assert isinstance(b, Add)
    assert b._sage_() == a

    # Sage Function
    e = x1 + wrap_sage_function(sage.log_gamma(x))
    assert str(e) == "x + log_gamma(x)"
    assert isinstance(e, Add)
    assert e + wrap_sage_function(
        sage.log_gamma(x)) == x1 + 2 * wrap_sage_function(sage.log_gamma(x))

    f = e.subs({x1: 10})
    assert f == 10 + log(362880)

    f = e.subs({x1: 2})
    assert f == 2

    f = e.subs({x1: 100})
    v = f.n(53, real=True)
    assert abs(float(v) - 459.13420537) < 1e-7

    f = e.diff(x1)
Exemplo n.º 3
0
def test_sage_conversions():

    x, y = sage.SR.var('x y')
    x1, y1 = symbols('x, y')

    # Symbol
    assert x1._sage_() == x
    assert x1 == sympify(x)

    # Integer
    assert Integer(12)._sage_() == sage.Integer(12)
    assert Integer(12) == sympify(sage.Integer(12))

    # Rational
    assert (Integer(1) / 2)._sage_() == sage.Integer(1) / 2
    assert Integer(1) / 2 == sympify(sage.Integer(1) / 2)

    # Operators
    assert x1 + y == x1 + y1
    assert x1 * y == x1 * y1
    assert x1**y == x1**y1
    assert x1 - y == x1 - y1
    assert x1 / y == x1 / y1

    assert x + y1 == x + y
    assert x * y1 == x * y
    # Doesn't work in Sage 6.1.1ubuntu2
    # assert x ** y1 == x ** y
    assert x - y1 == x - y
    assert x / y1 == x / y

    # Conversions
    assert (x1 + y1)._sage_() == x + y
    assert (x1 * y1)._sage_() == x * y
    assert (x1**y1)._sage_() == x**y
    assert (x1 - y1)._sage_() == x - y
    assert (x1 / y1)._sage_() == x / y

    assert x1 + y1 == sympify(x + y)
    assert x1 * y1 == sympify(x * y)
    assert x1**y1 == sympify(x**y)
    assert x1 - y1 == sympify(x - y)
    assert x1 / y1 == sympify(x / y)

    # Functions
    assert sin(x1) == sin(x)
    assert sin(x1)._sage_() == sage.sin(x)
    assert sin(x1) == sympify(sage.sin(x))

    assert cos(x1) == cos(x)
    assert cos(x1)._sage_() == sage.cos(x)
    assert cos(x1) == sympify(sage.cos(x))

    assert function_symbol('f', x1, y1)._sage_() == sage.function('f')(x, y)
    assert (function_symbol('f', 2 * x1,
                            x1 + y1).diff(x1)._sage_() == sage.function('f')(
                                2 * x, x + y).diff(x))

    assert LambertW(x1) == LambertW(x)
    assert LambertW(x1)._sage_() == sage.lambert_w(x)

    assert KroneckerDelta(x1, y1) == KroneckerDelta(x, y)
    assert KroneckerDelta(x1, y1)._sage_() == sage.kronecker_delta(x, y)

    assert erf(x1) == erf(x)
    assert erf(x1)._sage_() == sage.erf(x)

    assert lowergamma(x1, y1) == lowergamma(x, y)
    assert lowergamma(x1, y1)._sage_() == sage.gamma_inc_lower(x, y)

    assert uppergamma(x1, y1) == uppergamma(x, y)
    assert uppergamma(x1, y1)._sage_() == sage.gamma_inc(x, y)

    assert loggamma(x1) == loggamma(x)
    assert loggamma(x1)._sage_() == sage.log_gamma(x)

    assert beta(x1, y1) == beta(x, y)
    assert beta(x1, y1)._sage_() == sage.beta(x, y)

    assert floor(x1) == floor(x)
    assert floor(x1)._sage_() == sage.floor(x)

    assert ceiling(x1) == ceiling(x)
    assert ceiling(x1)._sage_() == sage.ceil(x)

    assert conjugate(x1) == conjugate(x)
    assert conjugate(x1)._sage_() == sage.conjugate(x)

    # For the following test, sage needs to be modified
    # assert sage.sin(x) == sage.sin(x1)

    # Constants and Booleans
    assert pi._sage_() == sage.pi
    assert E._sage_() == sage.e
    assert I._sage_() == sage.I
    assert GoldenRatio._sage_() == sage.golden_ratio
    assert Catalan._sage_() == sage.catalan
    assert EulerGamma._sage_() == sage.euler_gamma
    assert oo._sage_() == sage.oo
    assert zoo._sage_() == sage.unsigned_infinity
    assert nan._sage_() == sage.NaN
    assert true._sage_() == True
    assert false._sage_() == False

    assert pi == sympify(sage.pi)
    assert E == sympify(sage.e)
    assert GoldenRatio == sympify(sage.golden_ratio)
    assert Catalan == sympify(sage.catalan)
    assert EulerGamma == sympify(sage.euler_gamma)
    assert oo == sympify(sage.oo)
    assert zoo == sympify(sage.unsigned_infinity)
    assert nan == sympify(sage.NaN)

    # SympyConverter does not support converting the following
    # assert I == sympify(sage.I)

    # Matrix
    assert DenseMatrix(1, 2, [x1, y1])._sage_() == sage.matrix([[x, y]])

    # SympyConverter does not support converting the following
    # assert DenseMatrix(1, 2, [x1, y1]) == sympify(sage.matrix([[x, y]]))

    # Sage Number
    a = sage.Mod(2, 7)
    b = PyNumber(a, sage_module)

    a = a + 8
    b = b + 8
    assert isinstance(b, PyNumber)
    assert b._sage_() == a
    assert str(a) == str(b)

    # Sage Function
    e = x1 + wrap_sage_function(sage.log_gamma(x))
    assert str(e) == "x + log_gamma(x)"
    assert isinstance(e, Add)
    assert (e + wrap_sage_function(sage.log_gamma(x)) == x1 +
            2 * wrap_sage_function(sage.log_gamma(x)))

    f = e.subs({x1: 10})
    assert f == 10 + log(362880)

    f = e.subs({x1: 2})
    assert f == 2

    f = e.subs({x1: 100})
    v = f.n(53, real=True)
    assert abs(float(v) - 459.13420537) < 1e-7

    f = e.diff(x1)
Exemplo n.º 4
0
def test_sage_conversions():
    try:
        import sage.all as sage
    except ImportError:
        return

    x, y = sage.SR.var('x y')
    x1, y1 = symbols('x, y')

    # Symbol
    assert x1._sage_() == x
    assert x1 == sympify(x)

    # Integer
    assert Integer(12)._sage_() == sage.Integer(12)
    assert Integer(12) == sympify(sage.Integer(12))

    # Rational
    assert (Integer(1) / 2)._sage_() == sage.Integer(1) / 2
    assert Integer(1) / 2 == sympify(sage.Integer(1) / 2)

    # Operators
    assert x1 + y == x1 + y1
    assert x1 * y == x1 * y1
    assert x1 ** y == x1 ** y1
    assert x1 - y == x1 - y1
    assert x1 / y == x1 / y1

    assert x + y1 == x + y
    assert x * y1 == x * y
    # Doesn't work in Sage 6.1.1ubuntu2
    # assert x ** y1 == x ** y
    assert x - y1 == x - y
    assert x / y1 == x / y

    # Conversions
    assert (x1 + y1)._sage_() == x + y
    assert (x1 * y1)._sage_() == x * y
    assert (x1 ** y1)._sage_() == x ** y
    assert (x1 - y1)._sage_() == x - y
    assert (x1 / y1)._sage_() == x / y

    assert x1 + y1 == sympify(x + y)
    assert x1 * y1 == sympify(x * y)
    assert x1 ** y1 == sympify(x ** y)
    assert x1 - y1 == sympify(x - y)
    assert x1 / y1 == sympify(x / y)

    # Functions
    assert sin(x1) == sin(x)
    assert sin(x1)._sage_() == sage.sin(x)
    assert sin(x1) == sympify(sage.sin(x))

    assert cos(x1) == cos(x)
    assert cos(x1)._sage_() == sage.cos(x)
    assert cos(x1) == sympify(sage.cos(x))

    assert function_symbol('f', x1, y1)._sage_() == sage.function('f', x, y)
    assert function_symbol('f', 2 * x1, x1 + y1).diff(x1)._sage_() == sage.function('f', 2 * x, x + y).diff(x)

    # For the following test, sage needs to be modified
    # assert sage.sin(x) == sage.sin(x1)

    # Constants
    assert pi._sage_() == sage.pi
    assert E._sage_() == sage.e
    assert I._sage_() == sage.I

    assert pi == sympify(sage.pi)
    assert E == sympify(sage.e)

    # SympyConverter does not support converting the following
    # assert I == sympify(sage.I)

    # Matrix
    assert DenseMatrix(1, 2, [x1, y1])._sage_() == sage.matrix([[x, y]])

    # SympyConverter does not support converting the following
    # assert DenseMatrix(1, 2, [x1, y1]) == sympify(sage.matrix([[x, y]]))

    # Sage Number
    a = sage.Mod(2, 7)
    b = PyNumber(a, sage_module)

    a = a + 8
    b = b + 8
    assert isinstance(b, PyNumber)
    assert b._sage_() == a

    a = a + x
    b = b + x
    assert isinstance(b, Add)
    assert b._sage_() == a

    # Sage Function
    e = x1 + wrap_sage_function(sage.log_gamma(x))
    assert str(e) == "x + log_gamma(x)"
    assert isinstance(e, Add)
    assert e + wrap_sage_function(sage.log_gamma(x)) == x1 + 2*wrap_sage_function(sage.log_gamma(x))

    f = e.subs({x1 : 10})
    assert f == 10 + log(362880)

    f = e.subs({x1 : 2})
    assert f == 2

    f = e.subs({x1 : 100});
    v = f.n(53, real=True);
    assert abs(float(v) - 459.13420537) < 1e-7

    f = e.diff(x1)
Exemplo n.º 5
0
def test_sage_conversions():
    try:
        import sage.all as sage
    except ImportError:
        return

    x, y = sage.SR.var('x y')
    x1, y1 = symbols('x, y')

    # Symbol
    assert x1._sage_() == x
    assert x1 == sympify(x)

    # Integer
    assert Integer(12)._sage_() == sage.Integer(12)
    assert Integer(12) == sympify(sage.Integer(12))

    # Rational
    assert (Integer(1) / 2)._sage_() == sage.Integer(1) / 2
    assert Integer(1) / 2 == sympify(sage.Integer(1) / 2)

    # Operators
    assert x1 + y == x1 + y1
    assert x1 * y == x1 * y1
    assert x1 ** y == x1 ** y1
    assert x1 - y == x1 - y1
    assert x1 / y == x1 / y1

    assert x + y1 == x + y
    assert x * y1 == x * y
    # Doesn't work in Sage 6.1.1ubuntu2
    # assert x ** y1 == x ** y
    assert x - y1 == x - y
    assert x / y1 == x / y

    # Conversions
    assert (x1 + y1)._sage_() == x + y
    assert (x1 * y1)._sage_() == x * y
    assert (x1 ** y1)._sage_() == x ** y
    assert (x1 - y1)._sage_() == x - y
    assert (x1 / y1)._sage_() == x / y

    assert x1 + y1 == sympify(x + y)
    assert x1 * y1 == sympify(x * y)
    assert x1 ** y1 == sympify(x ** y)
    assert x1 - y1 == sympify(x - y)
    assert x1 / y1 == sympify(x / y)

    # Functions
    assert sin(x1) == sin(x)
    assert sin(x1)._sage_() == sage.sin(x)
    assert sin(x1) == sympify(sage.sin(x))

    assert cos(x1) == cos(x)
    assert cos(x1)._sage_() == sage.cos(x)
    assert cos(x1) == sympify(sage.cos(x))

    assert function_symbol('f', x1, y1)._sage_() == sage.function('f', x, y)
    assert function_symbol('f', 2 * x1, x1 + y1).diff(x1)._sage_() == sage.function('f', 2 * x, x + y).diff(x)

    # For the following test, sage needs to be modified
    # assert sage.sin(x) == sage.sin(x1)

    # Constants
    assert pi._sage_() == sage.pi
    assert E._sage_() == sage.e
    assert I._sage_() == sage.I

    assert pi == sympify(sage.pi)
    assert E == sympify(sage.e)

    # SympyConverter does not support converting the following
    # assert I == sympify(sage.I)

    # Matrix
    assert DenseMatrix(1, 2, [x1, y1])._sage_() == sage.matrix([[x, y]])
Exemplo n.º 6
0
  def _gensymbols(self, usefricdyn=True) :
    
    self.t = var('t',domain=RR)

    self.q = matrix(SR,self.dof,1 )
    self.dq = matrix(SR,self.dof,1 )
    self.ddq = matrix(SR,self.dof,1 )
    for i in range(1 ,self.dof+1 ):
      self.q[i-1 ] = var('q'+str(i),domain=RR)
      self.dq[i-1 ] = var('dq'+str(i),latex_name=r'\dot{q}_'+str(i),domain=RR)
      self.ddq[i-1 ] = var('ddq'+str(i),latex_name=r'\ddot{q}_'+str(i),domain=RR)

    self.qt = matrix(SR,self.dof,1 )
    for i in range(1 ,self.dof+1 ):
      self.qt[i-1 ,0 ] = function('q'+str(i)+'t',t,latex_name=r'q_'+str(i))
      
      self.LoP_trig_f2v = []
      for i in range(1 ,self.dof+1 ):
          self.LoP_trig_f2v.append( ( cos(self.q[i-1 ,0 ]) , var('c'+str(i),domain=RR) ) )
          self.LoP_trig_f2v.append( ( sin(self.q[i-1 ,0 ]) , var('s'+str(i),domain=RR) ) )
      self.LoP_trig_v2f = zip(zip(*self.LoP_trig_f2v)[1],zip(*self.LoP_trig_f2v)[0])
    
    self.D_q_v2f={} ; self.D_q_f2v={}
    for i in range(0 ,self.dof):
      self.D_q_v2f.update( { self.q[i,0 ]:self.qt[i,0 ], self.dq[i,0 ]:self.qt[i,0 ].derivative(t), self.ddq[i,0 ]:self.qt[i,0 ].derivative(t,2 ) } )
      self.D_q_f2v.update( { self.qt[i,0 ]:self.q[i,0 ], self.qt[i,0 ].derivative(t):self.dq[i,0 ], self.qt[i,0 ].derivative(t,2 ):self.ddq[i,0 ] } )
    
    
    self.mi = range(0 ,self.dof+1 )
    self.li = range(0 ,self.dof+1 )
    self.fvi = range(0 ,self.dof+1 )
    self.fci = range(0 ,self.dof+1 )
    self.Ici = range(0 ,self.dof+1 )
    self.Ifi = range(0 ,self.dof+1 )
    self.Ici_from_Ifi = range(0 ,self.dof+1 )
    self.Ifi_from_Ici = range(0 ,self.dof+1 )
    self.LoP_Ii_c2f = []
    self.LoP_Ii_f2c = []
    self.mli = range(0 ,self.dof+1 )
    self.mli_e = range(0 ,self.dof+1 )
    self.LoP_mli_v2e = []
    self.D_mli_v2e = {}

    for i in range(1 ,self.dof+1 ):

      self.mi[i] = var('m'+str(i),domain=RR)

      self.fvi[i] = var('fv'+str(i),latex_name=r'{fv}_{'+str(i)+'}',domain=RR)
      self.fci[i] = var('fc'+str(i),latex_name=r'{fc}_{'+str(i)+'}',domain=RR)
      
      aux1 = var('l_'+str(i)+'x',latex_name=r'l_{'+str(i)+',x}',domain=RR)
      aux2 = var('l_'+str(i)+'y',latex_name=r'l_{'+str(i)+',y}',domain=RR)
      aux3 = var('l_'+str(i)+'z',latex_name=r'l_{'+str(i)+',z}',domain=RR)
      self.li[i] = matrix([[aux1],[aux2],[aux3]])
      
      aux1 = var('ml_'+str(i)+'x',latex_name=r'\widehat{m_'+str(i)+'l_{'+str(i)+',x}}',domain=RR)
      aux2 = var('ml_'+str(i)+'y',latex_name=r'\widehat{m_'+str(i)+'l_{'+str(i)+',y}}',domain=RR)
      aux3 = var('ml_'+str(i)+'z',latex_name=r'\widehat{m_'+str(i)+'l_{'+str(i)+',z}}',domain=RR)
      self.mli[i] = matrix([[aux1],[aux2],[aux3]])
      self.mli_e[i] = self.mi[i] * self.li[i]
      self.LoP_mli_v2e.append( ( self.mli[i][0 ,0 ] , self.mli_e[i][0 ,0 ] ) )
      self.LoP_mli_v2e.append( ( self.mli[i][1 ,0 ] , self.mli_e[i][1 ,0 ] ) )
      self.LoP_mli_v2e.append( ( self.mli[i][2 ,0 ] , self.mli_e[i][2 ,0 ] ) )
    
      auxIcxx = var('I_'+str(i)+'xx',latex_name=r'I_{'+str(i)+',xx}',domain=RR)
      auxIcyy = var('I_'+str(i)+'yy',latex_name=r'I_{'+str(i)+',yy}',domain=RR)
      auxIczz = var('I_'+str(i)+'zz',latex_name=r'I_{'+str(i)+',zz}',domain=RR)
      auxIcxy = var('I_'+str(i)+'xy',latex_name=r'I_{'+str(i)+',xy}',domain=RR)
      auxIcxz = var('I_'+str(i)+'xz',latex_name=r'I_{'+str(i)+',xz}',domain=RR)
      auxIcyz = var('I_'+str(i)+'yz',latex_name=r'I_{'+str(i)+',yz}',domain=RR)
      self.Ici[i] = matrix([[auxIcxx,auxIcxy,auxIcxz],[auxIcxy,auxIcyy,auxIcyz],[auxIcxz,auxIcyz,auxIczz]])
      
      auxIfxx = var('If_'+str(i)+'xx',latex_name=r'\hat{I}_{'+str(i)+',xx}',domain=RR)
      auxIfyy = var('If_'+str(i)+'yy',latex_name=r'\hat{I}_{'+str(i)+',yy}',domain=RR)
      auxIfzz = var('If_'+str(i)+'zz',latex_name=r'\hat{I}_{'+str(i)+',zz}',domain=RR)
      auxIfxy = var('If_'+str(i)+'xy',latex_name=r'\hat{I}_{'+str(i)+',xy}',domain=RR)
      auxIfxz = var('If_'+str(i)+'xz',latex_name=r'\hat{I}_{'+str(i)+',xz}',domain=RR)
      auxIfyz = var('If_'+str(i)+'yz',latex_name=r'\hat{I}_{'+str(i)+',yz}',domain=RR)
      self.Ifi[i] = matrix([[auxIfxx,auxIfxy,auxIfxz],[auxIfxy,auxIfyy,auxIfyz],[auxIfxz,auxIfyz,auxIfzz]])
      
      self.Ifi_from_Ici[i] = self.Ici[i] + self.mi[i] * utils.skew(self.li[i]).transpose() * utils.skew(self.li[i])
      self.Ici_from_Ifi[i] = self.Ifi[i] - self.mi[i] * utils.skew(self.li[i]).transpose() * utils.skew(self.li[i])
      for e in [(a,b) for a in range(3) for b in range (3)]:
          self.LoP_Ii_f2c.append( ( self.Ifi[i][e] , self.Ifi_from_Ici[i][e] ) )
          self.LoP_Ii_c2f.append( ( self.Ici[i][e] , self.Ici_from_Ifi[i][e] ) )
    
    self.D_mli_v2e = utils.LoP_to_D( self.LoP_mli_v2e )
    self.D_Ii_f2c = utils.LoP_to_D( self.LoP_Ii_f2c )
    self.D_Ii_c2f = utils.LoP_to_D( self.LoP_Ii_c2f )
    self.D_parm_lin2elem =  utils.LoP_to_D( self.LoP_mli_v2e + self.LoP_Ii_f2c )
    
    Pi = [ matrix([ self.mi[i], self.mli[i][0,0], self.mli[i][1,0], self.mli[i][2,0], self.Ifi[i][0,0], self.Ifi[i][0,1], self.Ifi[i][0,2], self.Ifi[i][1,1], self.Ifi[i][1,2], self.Ifi[i][2,2] ] ).transpose() for i in range(1,self.dof+1) ]

    return self