Exemplo n.º 1
0
    def chebyshev_polynomial(self, n, kind='first'):
        """
        Generates an endomorphism of this affine line by a Chebyshev polynomial.

        Chebyshev polynomials are a sequence of recursively defined orthogonal
        polynomials. Chebyshev of the first kind are defined as `T_0(x) = 1`,
        `T_1(x) = x`, and `T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)`. Chebyshev of
        the second kind are defined as `U_0(x) = 1`,
        `U_1(x) = 2x`, and `U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)`.

        INPUT:

        - ``n`` -- a non-negative integer.

        - ``kind`` -- ``first`` or ``second`` specifying which kind of chebyshev the user would like
          to generate. Defaults to ``first``.

        OUTPUT: :class:`DynamicalSystem_affine`

        EXAMPLES::

            sage: A.<x> = AffineSpace(QQ, 1)
            sage: A.chebyshev_polynomial(5, 'first')
            Dynamical System of Affine Space of dimension 1 over Rational Field
            Defn: Defined on coordinates by sending (x) to
            (16*x^5 - 20*x^3 + 5*x)

        ::

            sage: A.<x> = AffineSpace(QQ, 1)
            sage: A.chebyshev_polynomial(3, 'second')
            Dynamical System of Affine Space of dimension 1 over Rational Field
            Defn: Defined on coordinates by sending (x) to
            (8*x^3 - 4*x)

        ::

            sage: A.<x> = AffineSpace(QQ, 1)
            sage: A.chebyshev_polynomial(3, 2)
            Traceback (most recent call last):
            ...
            ValueError: keyword 'kind' must have a value of either 'first' or 'second'

        ::

            sage: A.<x> = AffineSpace(QQ, 1)
            sage: A.chebyshev_polynomial(-4, 'second')
            Traceback (most recent call last):
            ...
            ValueError: first parameter 'n' must be a non-negative integer

        ::

            sage: A = AffineSpace(QQ, 2, 'x')
            sage: A.chebyshev_polynomial(2)
            Traceback (most recent call last):
            ...
            TypeError: affine space must be of dimension 1
        """
        if self.dimension_relative() != 1:
            raise TypeError("affine space must be of dimension 1")
        n = ZZ(n)
        if (n < 0):
            raise ValueError("first parameter 'n' must be a non-negative integer")
        from sage.dynamics.arithmetic_dynamics.affine_ds import DynamicalSystem_affine
        if kind == 'first':
            return DynamicalSystem_affine([chebyshev_T(n, self.gen(0))], domain=self)
        elif kind == 'second':
            return DynamicalSystem_affine([chebyshev_U(n, self.gen(0))], domain=self)
        else:
            raise ValueError("keyword 'kind' must have a value of either 'first' or 'second'")
Exemplo n.º 2
0
    def chebyshev_polynomial(self, n, kind='first'):
        """
        Generates an endomorphism of this affine line by a Chebyshev polynomial.

        Chebyshev polynomials are a sequence of recursively defined orthogonal
        polynomials. Chebyshev of the first kind are defined as `T_0(x) = 1`,
        `T_1(x) = x`, and `T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)`. Chebyshev of
        the second kind are defined as `U_0(x) = 1`,
        `U_1(x) = 2x`, and `U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)`.

        INPUT:

        - ``n`` -- a non-negative integer.

        - ``kind`` -- ``first`` or ``second`` specifying which kind of chebyshev the user would like
          to generate. Defaults to ``first``.

        OUTPUT: :class:`DynamicalSystem_affine`

        EXAMPLES::

            sage: A.<x> = AffineSpace(QQ, 1)
            sage: A.chebyshev_polynomial(5, 'first')
            Dynamical System of Affine Space of dimension 1 over Rational Field
            Defn: Defined on coordinates by sending (x) to
            (16*x^5 - 20*x^3 + 5*x)

        ::

            sage: A.<x> = AffineSpace(QQ, 1)
            sage: A.chebyshev_polynomial(3, 'second')
            Dynamical System of Affine Space of dimension 1 over Rational Field
            Defn: Defined on coordinates by sending (x) to
            (8*x^3 - 4*x)

        ::

            sage: A.<x> = AffineSpace(QQ, 1)
            sage: A.chebyshev_polynomial(3, 2)
            Traceback (most recent call last):
            ...
            ValueError: keyword 'kind' must have a value of either 'first' or 'second'

        ::

            sage: A.<x> = AffineSpace(QQ, 1)
            sage: A.chebyshev_polynomial(-4, 'second')
            Traceback (most recent call last):
            ...
            ValueError: first parameter 'n' must be a non-negative integer

        ::

            sage: A = AffineSpace(QQ, 2, 'x')
            sage: A.chebyshev_polynomial(2)
            Traceback (most recent call last):
            ...
            TypeError: affine space must be of dimension 1
        """
        if self.dimension_relative() != 1:
            raise TypeError("affine space must be of dimension 1")
        n = ZZ(n)
        if (n < 0):
            raise ValueError("first parameter 'n' must be a non-negative integer")
        from sage.dynamics.arithmetic_dynamics.affine_ds import DynamicalSystem_affine
        if kind == 'first':
            return DynamicalSystem_affine([chebyshev_T(n, self.gen(0))], domain=self)
        elif kind == 'second':
            return DynamicalSystem_affine([chebyshev_U(n, self.gen(0))], domain=self)
        else:
            raise ValueError("keyword 'kind' must have a value of either 'first' or 'second'")
Exemplo n.º 3
0
    def chebyshev_polynomial(self, n, kind='first', monic=False):
        """
        Generates an endomorphism of this affine line by a Chebyshev polynomial.

        Chebyshev polynomials are a sequence of recursively defined orthogonal
        polynomials. Chebyshev of the first kind are defined as `T_0(x) = 1`,
        `T_1(x) = x`, and `T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)`. Chebyshev of
        the second kind are defined as `U_0(x) = 1`,
        `U_1(x) = 2x`, and `U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)`.

        INPUT:

        - ``n`` -- a non-negative integer.

        - ``kind`` -- ``first`` or ``second`` specifying which kind of chebyshev the user would like
          to generate. Defaults to ``first``.

        - ``monic`` -- ``True`` or ``False`` specifying if the polynomial defining the system 
          should be monic or not. Defaults to ``False``.

        OUTPUT: :class:`DynamicalSystem_affine`

        EXAMPLES::

            sage: A.<x> = AffineSpace(QQ, 1)
            sage: A.chebyshev_polynomial(5, 'first')
            Dynamical System of Affine Space of dimension 1 over Rational Field
            Defn: Defined on coordinates by sending (x) to
            (16*x^5 - 20*x^3 + 5*x)

        ::

            sage: A.<x> = AffineSpace(QQ, 1)
            sage: A.chebyshev_polynomial(3, 'second')
            Dynamical System of Affine Space of dimension 1 over Rational Field
            Defn: Defined on coordinates by sending (x) to
            (8*x^3 - 4*x)

        ::

            sage: A.<x> = AffineSpace(QQ, 1)
            sage: A.chebyshev_polynomial(3, 2)
            Traceback (most recent call last):
            ...
            ValueError: keyword 'kind' must have a value of either 'first' or 'second'

        ::

            sage: A.<x> = AffineSpace(QQ, 1)
            sage: A.chebyshev_polynomial(-4, 'second')
            Traceback (most recent call last):
            ...
            ValueError: first parameter 'n' must be a non-negative integer

        ::

            sage: A = AffineSpace(QQ, 2, 'x')
            sage: A.chebyshev_polynomial(2)
            Traceback (most recent call last):
            ...
            TypeError: affine space must be of dimension 1

        ::

            sage: A.<x> = AffineSpace(QQ, 1)
            sage: A.chebyshev_polynomial(7, monic=True)
            Dynamical System of Affine Space of dimension 1 over Rational Field
              Defn: Defined on coordinates by sending (x) to
                    (x^7 - 7*x^5 + 14*x^3 - 7*x)

        ::

            sage: F.<t> = FunctionField(QQ)
            sage: A.<x> = AffineSpace(F,1)
            sage: A.chebyshev_polynomial(4, monic=True)
            Dynamical System of Affine Space of dimension 1 over Rational function field in t over Rational Field
              Defn: Defined on coordinates by sending (x) to
                    (x^4 + (-4)*x^2 + 2)
        """
        if self.dimension_relative() != 1:
            raise TypeError("affine space must be of dimension 1")
        n = ZZ(n)
        if (n < 0):
            raise ValueError("first parameter 'n' must be a non-negative integer")
        from sage.dynamics.arithmetic_dynamics.affine_ds import DynamicalSystem_affine
        if kind == 'first':
            if monic and self.base().characteristic() != 2:
                f = DynamicalSystem_affine([chebyshev_T(n, self.gen(0))], domain=self)
                f = f.homogenize(1)
                f = f.conjugate(matrix([[1/ZZ(2), 0],[0, 1]]))
                f = f.dehomogenize(1)
                return f
            return DynamicalSystem_affine([chebyshev_T(n, self.gen(0))], domain=self)
        elif kind == 'second':
            if monic and self.base().characteristic() != 2:
                f = DynamicalSystem_affine([chebyshev_T(n, self.gen(0))], domain=self)
                f = f.homogenize(1)
                f = f.conjugate(matrix([[1/ZZ(2), 0],[0, 1]]))
                f = f.dehomogenize(1)
                return f
            return DynamicalSystem_affine([chebyshev_U(n, self.gen(0))], domain=self)
        else:
            raise ValueError("keyword 'kind' must have a value of either 'first' or 'second'")