Exemplo n.º 1
0
    def find_isomorphism(self, polytope):
        """
        Return a lattice isomorphism with ``polytope``.

        INPUT:

        - ``polytope`` -- a polytope, potentially higher-dimensional.

        OUTPUT:

        A
        :class:`~sage.geometry.polyhedron.lattice_euclidean_group_element.LatticeEuclideanGroupElement`. It
        is not necessarily invertible if the affine dimension of
        ``self`` or ``polytope`` is not two. A
        :class:`~sage.geometry.polyhedron.lattice_euclidean_group_element.LatticePolytopesNotIsomorphicError`
        is raised if no such isomorphism exists.

        EXAMPLES::

            sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
            sage: L1 = LatticePolytope_PPL((1,0),(0,1),(0,0))
            sage: L2 = LatticePolytope_PPL((1,0,3),(0,1,0),(0,0,1))
            sage: iso = L1.find_isomorphism(L2)
            sage: iso(L1) == L2
            True

            sage: L1 = LatticePolytope_PPL((0, 1), (3, 0), (0, 3), (1, 0))
            sage: L2 = LatticePolytope_PPL((0,0,2,1),(0,1,2,0),(2,0,0,3),(2,3,0,0))
            sage: iso = L1.find_isomorphism(L2)
            sage: iso(L1) == L2
            True

        The following polygons are isomorphic over `\QQ`, but not as
        lattice polytopes::

            sage: L1 = LatticePolytope_PPL((1,0),(0,1),(-1,-1))
            sage: L2 = LatticePolytope_PPL((0, 0), (0, 1), (1, 0))
            sage: L1.find_isomorphism(L2)
            Traceback (most recent call last):
            ...
            LatticePolytopesNotIsomorphicError: different number of integral points
            sage: L2.find_isomorphism(L1)
            Traceback (most recent call last):
            ...
            LatticePolytopesNotIsomorphicError: different number of integral points
        """
        from sage.geometry.polyhedron.lattice_euclidean_group_element import \
            LatticePolytopesNotIsomorphicError
        if polytope.affine_dimension() != self.affine_dimension():
            raise LatticePolytopesNotIsomorphicError('different dimension')
        polytope_vertices = polytope.vertices()
        if len(polytope_vertices) != self.n_vertices():
            raise LatticePolytopesNotIsomorphicError(
                'different number of vertices')
        self_vertices = self.ordered_vertices()
        if len(polytope.integral_points()) != len(self.integral_points()):
            raise LatticePolytopesNotIsomorphicError(
                'different number of integral points')

        if len(self_vertices) < 3:
            return self._find_isomorphism_degenerate(polytope)

        polytope_origin = polytope_vertices[0]
        origin_P = C_Polyhedron(
            next(Generator_System_iterator(polytope.minimized_generators())))

        neighbors = []
        for c in polytope.minimized_constraints():
            if not c.is_inequality():
                continue
            if origin_P.relation_with(c).implies(
                    Poly_Con_Relation.saturates()):
                for i, g in enumerate(polytope.minimized_generators()):
                    if i == 0:
                        continue
                    g = C_Polyhedron(g)
                    if g.relation_with(c).implies(
                            Poly_Con_Relation.saturates()):
                        neighbors.append(polytope_vertices[i])
                        break

        p_ray_left = neighbors[0] - polytope_origin
        p_ray_right = neighbors[1] - polytope_origin
        try:
            return self._find_cyclic_isomorphism_matching_edge(
                polytope, polytope_origin, p_ray_left, p_ray_right)
        except LatticePolytopesNotIsomorphicError:
            pass
        try:
            return self._find_cyclic_isomorphism_matching_edge(
                polytope, polytope_origin, p_ray_right, p_ray_left)
        except LatticePolytopesNotIsomorphicError:
            pass
        raise LatticePolytopesNotIsomorphicError('different polygons')
Exemplo n.º 2
0
    def _find_isomorphism_degenerate(self, polytope):
        """
        Helper to pick an isomorphism of degenerate polygons

        INPUT:

        - ``polytope`` -- a :class:`LatticePolytope_PPL_class`. The
          polytope to compare with.

        EXAMPLES::

            sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL, C_Polyhedron
            sage: L1 = LatticePolytope_PPL(C_Polyhedron(2, 'empty'))
            sage: L2 = LatticePolytope_PPL(C_Polyhedron(3, 'empty'))
            sage: iso = L1.find_isomorphism(L2)   # indirect doctest
            sage: iso(L1) == L2
            True
            sage: iso = L1._find_isomorphism_degenerate(L2)
            sage: iso(L1) == L2
            True

            sage: L1 = LatticePolytope_PPL((-1,4))
            sage: L2 = LatticePolytope_PPL((2,1,5))
            sage: iso = L1.find_isomorphism(L2)
            sage: iso(L1) == L2
            True

            sage: L1 = LatticePolytope_PPL((-1,), (3,))
            sage: L2 = LatticePolytope_PPL((2,1,5), (2,-3,5))
            sage: iso = L1.find_isomorphism(L2)
            sage: iso(L1) == L2
            True

            sage: L1 = LatticePolytope_PPL((-1,-1), (3,-1))
            sage: L2 = LatticePolytope_PPL((2,1,5), (2,-3,5))
            sage: iso = L1.find_isomorphism(L2)
            sage: iso(L1) == L2
            True

            sage: L1 = LatticePolytope_PPL((-1,2), (3,1))
            sage: L2 = LatticePolytope_PPL((1,2,3),(1,2,4))
            sage: iso = L1.find_isomorphism(L2)
            sage: iso(L1) == L2
            True

            sage: L1 = LatticePolytope_PPL((-1,2), (3,2))
            sage: L2 = LatticePolytope_PPL((1,2,3),(1,2,4))
            sage: L1.find_isomorphism(L2)
            Traceback (most recent call last):
            ...
            LatticePolytopesNotIsomorphicError: different number of integral points

            sage: L1 = LatticePolytope_PPL((-1,2), (3,1))
            sage: L2 = LatticePolytope_PPL((1,2,3),(1,2,5))
            sage: L1.find_isomorphism(L2)
            Traceback (most recent call last):
            ...
            LatticePolytopesNotIsomorphicError: different number of integral points
        """
        from sage.geometry.polyhedron.lattice_euclidean_group_element import \
            LatticePolytopesNotIsomorphicError
        polytope_vertices = polytope.vertices()
        self_vertices = self.ordered_vertices()
        # handle degenerate cases
        if self.n_vertices() == 0:
            A = zero_matrix(ZZ, polytope.space_dimension(),
                            self.space_dimension())
            b = zero_vector(ZZ, polytope.space_dimension())
            return LatticeEuclideanGroupElement(A, b)
        if self.n_vertices() == 1:
            A = zero_matrix(ZZ, polytope.space_dimension(),
                            self.space_dimension())
            b = polytope_vertices[0]
            return LatticeEuclideanGroupElement(A, b)
        if self.n_vertices() == 2:
            self_origin = self_vertices[0]
            self_ray = self_vertices[1] - self_origin
            polytope_origin = polytope_vertices[0]
            polytope_ray = polytope_vertices[1] - polytope_origin
            Ds, Us, Vs = self_ray.column().smith_form()
            Dp, Up, Vp = polytope_ray.column().smith_form()
            assert Vs.nrows() == Vs.ncols() == Vp.nrows() == Vp.ncols() == 1
            assert abs(Vs[0, 0]) == abs(Vp[0, 0]) == 1
            A = zero_matrix(ZZ, Dp.nrows(), Ds.nrows())
            A[0, 0] = 1
            A = Up.inverse() * A * Us * (Vs[0, 0] * Vp[0, 0])
            b = polytope_origin - A * self_origin
            try:
                A = matrix(ZZ, A)
                b = vector(ZZ, b)
            except TypeError:
                raise LatticePolytopesNotIsomorphicError('different lattice')
            hom = LatticeEuclideanGroupElement(A, b)
            if hom(self) == polytope:
                return hom
            raise LatticePolytopesNotIsomorphicError('different polygons')
Exemplo n.º 3
0
    def _find_cyclic_isomorphism_matching_edge(self, polytope, polytope_origin,
                                               p_ray_left, p_ray_right):
        """
        Helper to find an isomorphism of polygons

        INPUT:

        - ``polytope`` -- the lattice polytope to compare to.

        - ``polytope_origin`` -- `\ZZ`-vector. a vertex of ``polytope``

        - ``p_ray_left`` - vector. the vector from ``polytope_origin``
          to one of its neighboring vertices.

        - ``p_ray_right`` - vector. the vector from
          ``polytope_origin`` to the other neighboring vertices.

        OUTPUT:

        The element of the lattice Euclidean group that maps ``self``
        to ``polytope`` with given origin and left/right neighboring
        vertex. A
        :class:`~sage.geometry.polyhedron.lattice_euclidean_group_element.LatticePolytopesNotIsomorphicError`
        is raised if no such isomorphism exists.

        EXAMPLES::

            sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
            sage: L1 = LatticePolytope_PPL((1,0),(0,1),(0,0))
            sage: L2 = LatticePolytope_PPL((1,0,3),(0,1,0),(0,0,1))
            sage: v0, v1, v2 = L2.vertices()
            sage: L1._find_cyclic_isomorphism_matching_edge(L2, v0, v1-v0, v2-v0)
            The map A*x+b with A=
            [ 0  1]
            [-1 -1]
            [ 1  3]
            b =
            (0, 1, 0)
        """
        from sage.geometry.polyhedron.lattice_euclidean_group_element import \
            LatticePolytopesNotIsomorphicError
        polytope_matrix = block_matrix(
            1, 2,
            [p_ray_left.column(), p_ray_right.column()])
        self_vertices = self.ordered_vertices()
        for i in range(len(self_vertices)):
            # three consecutive vertices
            v_left = self_vertices[(i + 0) % len(self_vertices)]
            v_origin = self_vertices[(i + 1) % len(self_vertices)]
            v_right = self_vertices[(i + 2) % len(self_vertices)]
            r_left = v_left - v_origin
            r_right = v_right - v_origin
            self_matrix = block_matrix(
                1, 2, [r_left.column(), r_right.column()])
            A = self_matrix.solve_left(polytope_matrix)
            b = polytope_origin - A * v_origin
            try:
                A = matrix(ZZ, A)
                b = vector(ZZ, b)
            except TypeError:
                continue
            if A.elementary_divisors()[0:2] != [1, 1]:
                continue
            hom = LatticeEuclideanGroupElement(A, b)
            if hom(self) == polytope:
                return hom
        raise LatticePolytopesNotIsomorphicError('different polygons')