Exemplo n.º 1
0
    def __truediv__(self, I):
        """
        Form the quotient by an integral ideal.

        EXAMPLES::

            sage: QQ / ZZ
            Q/Z
        """
        from sage.rings.ideal import Ideal_generic
        from sage.groups.additive_abelian.qmodnz import QmodnZ
        if I is ZZ:
            return QmodnZ(1)
        elif isinstance(I, Ideal_generic) and I.base_ring() is ZZ:
            return QmodnZ(I.gen())
        else:
            return super(RationalField, self).__truediv__(I)
Exemplo n.º 2
0
    def value_module_qf(self):
        r"""
        Return `\QQ / n\ZZ` with `n\ZZ = (V,W) + \ZZ \{ (w,w) | w \in W \}`.

        This is where the torsion quadratic form takes values.

        EXAMPLES::

            sage: A2 = Matrix(ZZ, 2, 2, [2,-1,-1,2])
            sage: L = IntegralLattice(2*A2)
            sage: D = L.discriminant_group()
            sage: D
            Finite quadratic module over Integer Ring with invariants (2, 6)
            Gram matrix of the quadratic form with values in Q/2Z:
            [  1 1/2]
            [1/2 1/3]
            sage: D.value_module_qf()
            Q/2Z
        """
        return QmodnZ(self._modulus_qf)
Exemplo n.º 3
0
    def value_module(self):
        r"""
        Return `\QQ / m\ZZ` with `m = (V, W)`.

        This is where the inner product takes values.

        EXAMPLES::

            sage: A2 = Matrix(ZZ, 2, 2, [2,-1,-1,2])
            sage: L = IntegralLattice(2*A2)
            sage: D = L.discriminant_group()
            sage: D
            Finite quadratic module over Integer Ring with invariants (2, 6)
            Gram matrix of the quadratic form with values in Q/2Z:
            [  1 1/2]
            [1/2 1/3]
            sage: D.value_module()
            Q/Z
        """
        return QmodnZ(self._modulus)