Exemplo n.º 1
0
def CongruenceSubgroup_constructor(*args):
    r"""
    Attempt to create a congruence subgroup from the given data.

    The allowed inputs are as follows:

    - A :class:`~sage.groups.matrix_gps.matrix_group.MatrixGroup` object. This
      must be a group of matrices over `\ZZ / N\ZZ` for some `N`, with
      determinant 1, in which case the function will return the group of
      matrices in `SL(2, \ZZ)` whose reduction mod `N` is in the given group.

    - A list of matrices over `\ZZ / N\ZZ` for some `N`. The function will then
      compute the subgroup of `SL(2, \ZZ)` generated by these matrices, and
      proceed as above.

    - An integer `N` and a list of matrices (over any ring coercible to `\ZZ /
      N\ZZ`, e.g. over `\ZZ`). The matrices will then be coerced to `\ZZ /
      N\ZZ`.

    The function checks that the input G is valid. It then tests to see if
    `G` is the preimage mod `N` of some group of matrices modulo a proper
    divisor `M` of `N`, in which case it replaces `G` with this group before
    continuing.

    EXAMPLES::

        sage: from sage.modular.arithgroup.congroup_generic import CongruenceSubgroup_constructor as CS
        sage: CS(2, [[1,1,0,1]])
        Congruence subgroup of SL(2,Z) of level 2, preimage of:
         Matrix group over Ring of integers modulo 2 with 1 generators (
        [1 1]
        [0 1]
        )
        sage: CS([matrix(Zmod(2), 2, [1,1,0,1])])
        Congruence subgroup of SL(2,Z) of level 2, preimage of:
         Matrix group over Ring of integers modulo 2 with 1 generators (
        [1 1]
        [0 1]
        )
        sage: CS(MatrixGroup([matrix(Zmod(2), 2, [1,1,0,1])]))
        Congruence subgroup of SL(2,Z) of level 2, preimage of:
         Matrix group over Ring of integers modulo 2 with 1 generators (
        [1 1]
        [0 1]
        )
        sage: CS(SL(2, 2))
        Modular Group SL(2,Z)

    Some invalid inputs::

        sage: CS(SU(2, 7))
        Traceback (most recent call last):
        ...
        TypeError: Ring of definition must be Z / NZ for some N
    """
    from sage.groups.matrix_gps.matrix_group import is_MatrixGroup
    if is_MatrixGroup(args[0]):
        G = args[0]

    elif type(args[0]) == type([]):
        G = MatrixGroup(args[0])

    elif args[0] in ZZ:
        M = MatrixSpace(Zmod(args[0]), 2)
        G = MatrixGroup([M(x) for x in args[1]])

    R = G.matrix_space().base_ring()
    if not hasattr(R, "cover_ring") or R.cover_ring() != ZZ:
        raise TypeError, "Ring of definition must be Z / NZ for some N"

    if not all([x.matrix().det() == 1 for x in G.gens()]):
        raise ValueError, "Group must be contained in SL(2, Z / N)"
    GG = _minimize_level(G)
    if GG in ZZ:
        from all import Gamma
        return Gamma(GG)
    else:
        return CongruenceSubgroupFromGroup(GG)
Exemplo n.º 2
0
def CongruenceSubgroup_constructor(*args):
    r"""
    Attempt to create a congruence subgroup from the given data.

    The allowed inputs are as follows:

    - A :class:`~sage.groups.matrix_gps.matrix_group.MatrixGroup` object. This
      must be a group of matrices over `\ZZ / N\ZZ` for some `N`, with
      determinant 1, in which case the function will return the group of
      matrices in `SL(2, \ZZ)` whose reduction mod `N` is in the given group.

    - A list of matrices over `\ZZ / N\ZZ` for some `N`. The function will then
      compute the subgroup of `SL(2, \ZZ)` generated by these matrices, and
      proceed as above.

    - An integer `N` and a list of matrices (over any ring coercible to `\ZZ /
      N\ZZ`, e.g. over `\ZZ`). The matrices will then be coerced to `\ZZ /
      N\ZZ`.

    The function checks that the input G is valid. It then tests to see if
    `G` is the preimage mod `N` of some group of matrices modulo a proper
    divisor `M` of `N`, in which case it replaces `G` with this group before
    continuing.

    EXAMPLES::

        sage: from sage.modular.arithgroup.congroup_generic import CongruenceSubgroup_constructor as CS
        sage: CS(2, [[1,1,0,1]])
        Congruence subgroup of SL(2,Z) of level 2, preimage of:
         Matrix group over Ring of integers modulo 2 with 1 generators (
        [1 1]
        [0 1]
        )
        sage: CS([matrix(Zmod(2), 2, [1,1,0,1])])
        Congruence subgroup of SL(2,Z) of level 2, preimage of:
         Matrix group over Ring of integers modulo 2 with 1 generators (
        [1 1]
        [0 1]
        )
        sage: CS(MatrixGroup([matrix(Zmod(2), 2, [1,1,0,1])]))
        Congruence subgroup of SL(2,Z) of level 2, preimage of:
         Matrix group over Ring of integers modulo 2 with 1 generators (
        [1 1]
        [0 1]
        )
        sage: CS(SL(2, 2))
        Modular Group SL(2,Z)

    Some invalid inputs::

        sage: CS(SU(2, 7))
        Traceback (most recent call last):
        ...
        TypeError: Ring of definition must be Z / NZ for some N
    """
    from sage.groups.matrix_gps.matrix_group import is_MatrixGroup
    if is_MatrixGroup(args[0]):
        G = args[0]

    elif isinstance(args[0], list):
        G = MatrixGroup(args[0])

    elif args[0] in ZZ:
        M = MatrixSpace(Zmod(args[0]), 2)
        G = MatrixGroup([M(x) for x in args[1]])

    R = G.matrix_space().base_ring()
    if not hasattr(R, "cover_ring") or R.cover_ring() != ZZ:
        raise TypeError("Ring of definition must be Z / NZ for some N")

    if not all([x.matrix().det() == 1 for x in G.gens()]):
        raise ValueError("Group must be contained in SL(2, Z / N)")
    GG = _minimize_level(G)
    if GG in ZZ:
        from .all import Gamma
        return Gamma(GG)
    else:
        return CongruenceSubgroupFromGroup(GG)