Exemplo n.º 1
0
def katz_expansions(k0, p, ellp, mdash, n):
    r"""
    Returns a list e of q-expansions, and the Eisenstein series `E_{p-1} = 1 +
    \dots`, all modulo `(p^\text{mdash},q^\text{ellp})`. The list e contains
    the elements `e_{i,s}` in the Katz expansions basis in Step 3 of Algorithm
    1 in [AGBL]_ when one takes as input to that algorithm p,m and k and define
    ``k0``, ``mdash``, n, ``ellp = ell*p`` as in Step 1.

    INPUT:

    - ``k0`` -- integer in range 0 to p-1.
    - ``p`` -- prime at least 5.
    - ``ellp,mdash,n`` -- positive integers.

    OUTPUT:

    - list of q-expansions and the Eisenstein series E_{p-1} modulo
      `(p^\text{mdash},q^\text{ellp})`.

    EXAMPLES::

        sage: from sage.modular.overconvergent.hecke_series import katz_expansions
        sage: katz_expansions(0,5,10,3,4)
        ([1 + O(q^10), q + 6*q^2 + 27*q^3 + 98*q^4 + 65*q^5 + 37*q^6 + 81*q^7 + 85*q^8 + 62*q^9 + O(q^10)],
        1 + 115*q + 35*q^2 + 95*q^3 + 20*q^4 + 115*q^5 + 105*q^6 + 60*q^7 + 25*q^8 + 55*q^9 + O(q^10))
    """
    S = Zmod(p**mdash)

    Ep1 = eisenstein_series_qexp(p - 1, ellp, K=S, normalization="constant")
    E4 = eisenstein_series_qexp(4, ellp, K=S, normalization="constant")
    E6 = eisenstein_series_qexp(6, ellp, K=S, normalization="constant")

    delta = delta_qexp(ellp, K=S)
    h = delta / E6**2
    hj = delta.parent()(1)
    e = []

    # We compute negative powers of E_(p-1) successively (this saves a great
    # deal of time). The effect is that Ep1mi = Ep1 ** (-i).
    Ep1m1 = ~Ep1
    Ep1mi = 1
    for i in xrange(0, n + 1):
        Wi, hj = compute_Wi(k0 + i * (p - 1), p, h, hj, E4, E6)
        for bis in Wi:
            eis = p**floor(i / (p + 1)) * Ep1mi * bis
            e.append(eis)
        Ep1mi = Ep1mi * Ep1m1

    return e, Ep1
Exemplo n.º 2
0
def katz_expansions(k0,p,ellp,mdash,n):
    r"""
    Returns a list e of q-expansions, and the Eisenstein series `E_{p-1} = 1 +
    \dots`, all modulo `(p^\text{mdash},q^\text{ellp})`. The list e contains
    the elements `e_{i,s}` in the Katz expansions basis in Step 3 of Algorithm
    1 in [AGBL]_ when one takes as input to that algorithm p,m and k and define
    ``k0``, ``mdash``, n, ``ellp = ell*p`` as in Step 1.

    INPUT:

    - ``k0`` -- integer in range 0 to p-1.
    - ``p`` -- prime at least 5.
    - ``ellp,mdash,n`` -- positive integers.

    OUTPUT:

    - list of q-expansions and the Eisenstein series E_{p-1} modulo
      `(p^\text{mdash},q^\text{ellp})`.

    EXAMPLES::

        sage: from sage.modular.overconvergent.hecke_series import katz_expansions
        sage: katz_expansions(0,5,10,3,4)
        ([1 + O(q^10), q + 6*q^2 + 27*q^3 + 98*q^4 + 65*q^5 + 37*q^6 + 81*q^7 + 85*q^8 + 62*q^9 + O(q^10)],
        1 + 115*q + 35*q^2 + 95*q^3 + 20*q^4 + 115*q^5 + 105*q^6 + 60*q^7 + 25*q^8 + 55*q^9 + O(q^10))
    """
    S = Zmod(p**mdash)

    Ep1 = eisenstein_series_qexp(p-1, ellp, K=S, normalization="constant")
    E4 =  eisenstein_series_qexp(4,   ellp, K=S, normalization="constant")
    E6 =  eisenstein_series_qexp(6,   ellp, K=S, normalization="constant")

    delta = delta_qexp(ellp, K=S)
    h = delta / E6**2
    hj = delta.parent()(1)
    e = []

    # We compute negative powers of E_(p-1) successively (this saves a great
    # deal of time). The effect is that Ep1mi = Ep1 ** (-i).
    Ep1m1 = ~Ep1
    Ep1mi = 1
    for i in xrange(0,n+1):
        Wi,hj = compute_Wi(k0 + i*(p-1),p,h,hj,E4,E6)
        for bis in Wi:
            eis = p**floor(i/(p+1)) * Ep1mi * bis
            e.append(eis)
        Ep1mi = Ep1mi * Ep1m1

    return e,Ep1