Exemplo n.º 1
0
    def tensor_product(self, other):
        r"""
        Return the graded tensor product.

        INPUT:

        - ``other`` -- a filtered vector space.

        OUTPUT:

        The graded tensor product, that is, the tensor product of a
        generator of degree `d_1` with a generator in degree `d_2` has
        degree `d_1 + d_2`.

        EXAMPLES::

            sage: F1 = FilteredVectorSpace(1, 1)
            sage: F2 = FilteredVectorSpace(1, 2)
            sage: F1.tensor_product(F2)
            QQ^1 >= 0
            sage: F1 * F2
            QQ^1 >= 0

            sage: F1.min_degree()
            1
            sage: F2.min_degree()
            2
            sage: (F1*F2).min_degree()
            3

        A suitable base ring is chosen if they do not match::

            sage: v = [(1,0), (0,1)]
            sage: F1 = FilteredVectorSpace(v, {0:[0], 1:[1]}, base_ring=QQ)
            sage: F2 = FilteredVectorSpace(v, {0:[0], 1:[1]}, base_ring=RDF)
            sage: F1 * F2
            RDF^4 >= RDF^3 >= RDF^1 >= 0
        """
        V = self
        W = other
        from sage.structure.element import get_coercion_model
        base_ring = get_coercion_model().common_parent(V.base_ring(), W.base_ring())
        from sage.modules.tensor_operations import VectorCollection, TensorOperation
        V_generators, V_indices = V.presentation()
        W_generators, W_indices = W.presentation()
        V_coll = VectorCollection(V_generators, base_ring, V.dimension())
        W_coll = VectorCollection(W_generators, base_ring, W.dimension())
        T = TensorOperation([V_coll, W_coll], 'product')

        filtration = dict()
        for V_deg in V.support():
            for W_deg in W.support():
                deg = V_deg + W_deg
                indices = filtration.get(deg, set())
                for i in V_indices[V_deg]:
                    for j in W_indices[W_deg]:
                        i_tensor_j = T.index_map(i, j)
                        indices.add(i_tensor_j)
                filtration[deg] = indices
        return FilteredVectorSpace(T.vectors(), filtration, base_ring=base_ring)
Exemplo n.º 2
0
    def _power_operation(self, n, operation):
        """
        Return tensor power operation.

        INPUT:

        - ``n`` -- integer. the number of factors of ``self``.

        - ``operation`` -- string. See
          :class:`~sage.modules.tensor_operations.TensorOperation` for
          details.

        EXAMPLES::

            sage: F = FilteredVectorSpace(1, 1) + FilteredVectorSpace(1, 2);  F
            QQ^2 >= QQ^1 >= 0
            sage: F._power_operation(2, 'symmetric')
            QQ^3 >= QQ^2 >= QQ^1 >= 0
            sage: F._power_operation(2, 'antisymmetric')
            QQ^1 >= 0
        """
        from sage.modules.tensor_operations import VectorCollection, TensorOperation
        generators, indices = self.presentation()
        V = VectorCollection(generators, self.base_ring(), self.dimension())
        T = TensorOperation([V] * n, operation)

        iters = [self.support()] * n
        filtration = dict()
        from sage.categories.cartesian_product import cartesian_product
        for degrees in cartesian_product(iters):
            deg = sum(degrees)
            filt_deg = filtration.get(deg, set())
            for i in cartesian_product([indices.get(d) for d in degrees]):
                pow_i = T.index_map(*i)
                if pow_i is not None:
                    filt_deg.add(pow_i)
            filtration[deg] = filt_deg
        return FilteredVectorSpace(T.vectors(),
                                   filtration,
                                   base_ring=self.base_ring())