Exemplo n.º 1
0
    def dfs(x, path, path_mat):

        logger.info("Computing local monodromy around %s via %s", x, path)

        local_mat = matprod(x.local_monodromy)
        based_mat = (~path_mat) * local_mat * path_mat

        if x.want_self:
            yield LocalMonodromyData(QQbar(x), based_mat, False)
        if x.want_conj:
            conj = x.conjugate()
            logger.info(
                "Computing local monodromy around %s by complex "
                "conjugation", conj)
            conj_mat = conjugate_monodromy(based_mat)
            yield LocalMonodromyData(QQbar(x), conj_mat, False)

        x.done = True

        for y in tree.neighbors(x):
            if y.done:
                continue
            if y.local_monodromy is None:
                y.polygon, y.local_monodromy = _local_monodromy_loop(
                    dop, y, eps)
            new_path_mat = _extend_path_mat(dop, path_mat, x, y, eps, matprod)
            yield from dfs(y, path + [y], new_path_mat)
Exemplo n.º 2
0
def _formal_monodromy_from_critical_monomials(critical_monomials, ring):
    r"""
    Compute the formal monodromy matrix of the canonical system of fundamental
    solutions at the origin.

    INPUT:

    - ``critical_monomials``: list of ``FundamentalSolution`` objects ``sol``
      such that, if ``sol = z^(λ+n)·(1 + Õ(z)`` where ``λ`` is the leftmost
      valuation of a group of solutions and ``s`` is another shift of ``λ``
      appearing in the basis, then ``sol.value[s]`` contains the list of
      coefficients of ``z^(λ+s)·log(z)^k/k!``, ``k = 0, 1, ...`` in ``sol``

    - ``ring``

    OUTPUT:

    - the formal monodromy matrix, with coefficients in ``ring``

    - a boolean flag indicating whether the local monodromy is scalar (useful
      when ``ring`` is an inexact ring!)
    """

    mat = matrix.matrix(ring, len(critical_monomials))
    twopii = 2 * pi * QQbar(QQi.gen())
    expo0 = critical_monomials[0].leftmost
    scalar = True

    for j, jsol in enumerate(critical_monomials):

        for i, isol in enumerate(critical_monomials):
            if isol.leftmost != jsol.leftmost:
                continue
            for k, c in enumerate(jsol.value[isol.shift]):
                delta = k - isol.log_power
                if c.is_zero():
                    continue
                if delta >= 0:
                    # explicit conversion sometimes necessary (Sage bug #31551)
                    mat[i, j] += ring(c) * twopii**delta / delta.factorial()
                if delta >= 1:
                    scalar = False

        expo = jsol.leftmost
        if expo != expo0:
            scalar = False
        if expo.parent() is QQ:
            eigv = ring(QQbar.zeta(expo.denominator())**expo.numerator())
        else:
            # conversion via QQbar seems necessary with some number fields
            eigv = twopii.mul(QQbar(expo), hold=True).exp(hold=True)
        eigv = ring(eigv)
        if ring is SR:
            _rescale_col_hold_nontrivial(mat, j, eigv)
        else:
            mat.rescale_col(j, eigv)

    return mat, scalar
Exemplo n.º 3
0
def is_cosine_sine_of_rational(c,s):
    r"""
    Check whether the given pair is a cosine and sine of a same rational angle.

    EXAMPLES::

        sage: from flatsurf.geometry.matrix_2x2 import is_cosine_sine_of_rational

        sage: c = s = AA(sqrt(2))/2
        sage: is_cosine_sine_of_rational(c,s)
        True
        sage: c = AA(sqrt(3))/2; s = AA(1/2)
        sage: is_cosine_sine_of_rational(c,s)
        True

        sage: c = AA(sqrt(5)/2); s = (1 - c**2).sqrt()
        sage: c**2 + s**2
        1.000000000000000?
        sage: is_cosine_sine_of_rational(c,s)
        False

        sage: c = (AA(sqrt(5)) + 1)/4; s = (1 - c**2).sqrt()
        sage: is_cosine_sine_of_rational(c,s)
        True

        sage: K.<sqrt2> = NumberField(x**2 - 2, embedding=1.414)
        sage: is_cosine_sine_of_rational(K.zero(),-K.one())
        True
    """
    return (QQbar(c) + QQbar.gen() * QQbar(s)).minpoly().is_cyclotomic()
    def __init__(self, expo, values, dop=None, check=True):
        r"""
        TESTS::

            sage: from ore_algebra import *
            sage: from ore_algebra.analytic.naive_sum import *
            sage: Dops, x, Dx = DifferentialOperators()
            sage: LogSeriesInitialValues(0, {0: (1, 0)}, x*Dx^3 + 2*Dx^2 + x*Dx)
            Traceback (most recent call last):
            ...
            ValueError: invalid initial data for x*Dx^3 + 2*Dx^2 + x*Dx at 0
        """
        try:
            self.expo = QQ.coerce(expo)
        except TypeError:
            self.expo = QQbar.coerce(expo)
        if isinstance(values, dict):
            all_values = sum(values.values(), ())  # concatenation of tuples
        else:
            all_values = values
            values = dict((n, (values[n], )) for n in xrange(len(values)))
        self.universe = Sequence(all_values).universe()
        if not utilities.is_numeric_parent(self.universe):
            raise ValueError("initial values must coerce into a ball field")
        self.shift = {
            s: tuple(self.universe(a) for a in ini)
            for s, ini in values.iteritems()
        }

        try:
            if check and dop is not None and not self.is_valid_for(dop):
                raise ValueError(
                    "invalid initial data for {} at 0".format(dop))
        except TypeError:  # coercion problems btw QQbar and number fields
            pass
Exemplo n.º 5
0
    def local_basis_structure(self):
        r"""
        EXAMPLES::

            sage: from ore_algebra import *
            sage: from ore_algebra.analytic.path import Point
            sage: Dops, x, Dx = DifferentialOperators()
            sage: Point(0, x*Dx^2 + Dx + x).local_basis_structure()
            [FundamentalSolution(leftmost=0, shift=0, log_power=1, value=None),
             FundamentalSolution(leftmost=0, shift=0, log_power=0, value=None)]
            sage: Point(0, Dx^3 + x*Dx + x).local_basis_structure()
            [FundamentalSolution(leftmost=0, shift=0, log_power=0, value=None),
             FundamentalSolution(leftmost=0, shift=1, log_power=0, value=None),
             FundamentalSolution(leftmost=0, shift=2, log_power=0, value=None)]
        """
        # TODO: provide a way to compute the first terms of the series. First
        # need a good way to share code with fundamental_matrix_regular. Or
        # perhaps modify generalized_series_solutions() to agree with our
        # definition of the basis?
        if self.is_ordinary():  # support inexact points in this case
            return [
                FundamentalSolution(QQbar.zero(), ZZ(expo), ZZ.zero(), None)
                for expo in range(self.dop.order())
            ]
        elif not self.is_regular():
            raise NotImplementedError("irregular singular point")
        sols = map_local_basis(self.local_diffop(), lambda ini, bwrec: None,
                               lambda leftmost, shift: {})
        sols.sort(key=sort_key_by_asympt)
        return sols
Exemplo n.º 6
0
    def regular_polygon(self, n, exact=True, base_ring=None):
        """
        Return a regular polygon with `n` vertices.

        INPUT:

        - ``n`` -- a positive integer, the number of vertices.

        - ``exact`` -- (boolean, default ``True``) if ``False`` floating point
          numbers are used for coordinates.

        - ``base_ring`` -- a ring in which the coordinates will lie. It is
          ``None`` by default. If it is not provided and ``exact`` is ``True``
          then it will be the field of real algebraic number, if ``exact`` is
          ``False`` it will be the real double field.

        EXAMPLES::

            sage: octagon = polytopes.regular_polygon(8)
            sage: octagon
            A 2-dimensional polyhedron in AA^2 defined as the convex hull of 8 vertices
            sage: octagon.n_vertices()
            8
            sage: v = octagon.volume()
            sage: v
            2.828427124746190?
            sage: v == 2*QQbar(2).sqrt()
            True

        Its non exact version::

            sage: polytopes.regular_polygon(3, exact=False).vertices()
            (A vertex at (0.0, 1.0),
             A vertex at (0.8660254038, -0.5),
             A vertex at (-0.8660254038, -0.5))
            sage: polytopes.regular_polygon(25, exact=False).n_vertices()
            25
        """
        n = ZZ(n)
        if n <= 2:
            raise ValueError(
                "n (={}) must be an integer greater than 2".format(n))

        if base_ring is None:
            if exact:
                base_ring = AA
            else:
                base_ring = RDF

        try:
            omega = 2 * base_ring.pi() / n
            verts = [((i * omega).sin(), (i * omega).cos()) for i in range(n)]
        except AttributeError:
            z = QQbar.zeta(n)
            verts = [(base_ring((z**k).imag()), base_ring((z**k).real()))
                     for k in range(n)]

        return Polyhedron(vertices=verts, base_ring=base_ring)
Exemplo n.º 7
0
    def regular_polygon(self, n, exact=True, base_ring=None):
        """
        Return a regular polygon with `n` vertices.

        INPUT:

        - ``n`` -- a positive integer, the number of vertices.

        - ``exact`` -- (boolean, default ``True``) if ``False`` floating point
          numbers are used for coordinates.

        - ``base_ring`` -- a ring in which the coordinates will lie. It is
          ``None`` by default. If it is not provided and ``exact`` is ``True``
          then it will be the field of real algebraic number, if ``exact`` is
          ``False`` it will be the real double field.

        EXAMPLES::

            sage: octagon = polytopes.regular_polygon(8)
            sage: octagon
            A 2-dimensional polyhedron in AA^2 defined as the convex hull of 8 vertices
            sage: octagon.n_vertices()
            8
            sage: v = octagon.volume()
            sage: v
            2.828427124746190?
            sage: v == 2*QQbar(2).sqrt()
            True

        Its non exact version::

            sage: polytopes.regular_polygon(3, exact=False).vertices()
            (A vertex at (0.0, 1.0),
             A vertex at (0.8660254038, -0.5),
             A vertex at (-0.8660254038, -0.5))
            sage: polytopes.regular_polygon(25, exact=False).n_vertices()
            25
        """
        n = ZZ(n)
        if n <= 2:
            raise ValueError("n (={}) must be an integer greater than 2".format(n))

        if base_ring is None:
            if exact:
                base_ring = AA
            else:
                base_ring = RDF

        try:
            omega = 2*base_ring.pi() / n
            verts = [((i*omega).sin(), (i*omega).cos()) for i in range(n)]
        except AttributeError:
            z = QQbar.zeta(n)
            verts = [(base_ring((z**k).imag()), base_ring((z**k).real())) for k in range(n)]

        return Polyhedron(vertices=verts, base_ring=base_ring)
Exemplo n.º 8
0
    def __init__(self, expo, values, dop=None, check=True, mults=None):
        r"""
        TESTS::

            sage: from ore_algebra import *
            sage: from ore_algebra.analytic.naive_sum import *
            sage: from ore_algebra.analytic.differential_operator import DifferentialOperator
            sage: Dops, x, Dx = DifferentialOperators()
            sage: LogSeriesInitialValues(0, {0: (1, 0)},
            ....:         DifferentialOperator(x*Dx^3 + 2*Dx^2 + x*Dx))
            Traceback (most recent call last):
            ...
            ValueError: invalid initial data for x*Dx^3 + 2*Dx^2 + x*Dx at 0
        """

        try:
            self.expo = QQ.coerce(expo)
        except TypeError:
            try:
                self.expo = QQbar.coerce(expo)
            except TypeError:
                # symbolic; won't be sortable
                self.expo = expo

        if isinstance(values, dict):
            all_values = tuple(
                chain.from_iterable(ini if isinstance(ini, tuple) else (ini, )
                                    for ini in values.values()))
        else:
            all_values = values
            values = dict((n, (values[n], )) for n in range(len(values)))
        self.universe = Sequence(all_values).universe()
        if not utilities.is_numeric_parent(self.universe):
            raise ValueError("initial values must coerce into a ball field")

        self.shift = {}
        if mults is not None:
            for s, m in mults:
                self.shift[s] = [self.universe.zero()] * m
        for k, ini in values.items():
            if isinstance(k, tuple):  # requires mult != None
                s, m = k
                s = int(s)
                self.shift[s][m] = self.universe(ini)
            else:
                s = int(k)
                self.shift[s] = tuple(self.universe(a) for a in ini)
        self.shift = {s: tuple(ini) for s, ini in self.shift.items()}

        try:
            if check and dop is not None and not self.is_valid_for(dop):
                raise ValueError(
                    "invalid initial data for {} at 0".format(dop))
        except TypeError:  # coercion problems btw QQbar and number fields
            pass
Exemplo n.º 9
0
    def delta(self):
        r"""
        TESTS::

            sage: from ore_algebra import *
            sage: Dops, x, Dx = DifferentialOperators()
            sage: (Dx - 1).numerical_solution([1], [0, RealField(10)(.33), 1])
            [2.71828182845904...]
        """
        z0, z1 = self.start.value, self.end.value
        if (z0.parent() is not z1.parent() and self.start.is_exact()
                and self.end.is_exact()):
            z0 = self.start.exact().value
            z1 = self.end.exact().value
            try:
                return z1 - z0
            except TypeError:
                return as_embedded_number_field_element(QQbar(z1) - QQbar(z0))
        else:
            return z1 - z0
Exemplo n.º 10
0
def rotation_matrix_angle(r, check=False):
    r"""
    Return the angle of the rotation matrix ``r`` divided by ``2 pi``.

    EXAMPLES::

        sage: from flatsurf.geometry.matrix_2x2 import rotation_matrix_angle

        sage: def rot_matrix(p, q):
        ....:     z = QQbar.zeta(q) ** p
        ....:     c = z.real()
        ....:     s = z.imag()
        ....:     return matrix(AA, 2, [c,-s,s,c])
        sage: [rotation_matrix_angle(rot_matrix(i, 5)) for i in range(1,5)]
        [1/5, 2/5, 3/5, 4/5]
        sage: [rotation_matrix_angle(rot_matrix(i, 5)) for i in range(1,5)]
        [1/5, 2/5, 3/5, 4/5]
        sage: [rotation_matrix_angle(rot_matrix(i,7)) for i in range(1,7)]
        [1/7, 2/7, 3/7, 4/7, 5/7, 6/7]

    Some random tests::

        sage: for _ in range(100):
        ....:     r = QQ.random_element(x=0,y=500)
        ....:     r -= r.floor()
        ....:     m = rot_matrix(r.numerator(), r.denominator())
        ....:     assert rotation_matrix_angle(m) == r

    .. NOTE::

        This is using floating point arithmetic and might be wrong.
    """
    e0, e1 = r.change_ring(CDF).eigenvalues()
    m0 = (e0.log() / 2 / CDF.pi()).imag()
    m1 = (e1.log() / 2 / CDF.pi()).imag()
    r0 = RR(m0).nearby_rational(max_denominator=10000)
    r1 = RR(m1).nearby_rational(max_denominator=10000)
    if r0 != -r1:
        raise RuntimeError
    r0 = r0.abs()
    if r[0][1] > 0:
        return QQ.one() - r0
    else:
        return r0

    if check:
        e = r.change_ring(AA).eigenvalues()[0]
        if e.minpoly() != ZZ['x'].cyclotomic_polynomial()(r.denominator()):
            raise RuntimeError
        z = QQbar.zeta(r.denominator())
        if z**r.numerator() != e:
            raise RuntimeError

    return r
Exemplo n.º 11
0
def as_embedded_number_field_element(alg):
    from sage.rings.number_field.number_field import NumberField
    nf, elt, emb = alg.as_number_field_element()
    if nf is QQ:
        res = elt
    else:
        embnf = NumberField(nf.polynomial(),
                            nf.variable_name(),
                            embedding=emb(nf.gen()))
        res = elt.polynomial()(embnf.gen())
    assert QQbar.coerce(res) == alg
    return res
Exemplo n.º 12
0
def rotation_matrix_angle(r, check=False):
    r"""
    Return the angle of the rotation matrix ``r`` divided by ``2 pi``.

    EXAMPLES::

        sage: from flatsurf.geometry.matrix_2x2 import rotation_matrix_angle

        sage: def rot_matrix(p, q):
        ....:     z = QQbar.zeta(q) ** p
        ....:     c = z.real()
        ....:     s = z.imag()
        ....:     return matrix(AA, 2, [c,-s,s,c])
        sage: [rotation_matrix_angle(rot_matrix(i, 5)) for i in range(1,5)]
        [1/5, 2/5, 3/5, 4/5]
        sage: [rotation_matrix_angle(rot_matrix(i,7)) for i in range(1,7)]
        [1/7, 2/7, 3/7, 4/7, 5/7, 6/7]

    Some random tests::

        sage: for _ in range(100):
        ....:     r = QQ.random_element(x=0,y=500)
        ....:     r -= r.floor()
        ....:     m = rot_matrix(r.numerator(), r.denominator())
        ....:     assert rotation_matrix_angle(m) == r

    .. NOTE::

        This is using floating point arithmetic and might be wrong.
    """
    e0,e1 = r.change_ring(CDF).eigenvalues()
    m0 = (e0.log() / 2 / CDF.pi()).imag()
    m1 = (e1.log() / 2 / CDF.pi()).imag()
    r0 = RR(m0).nearby_rational(max_denominator=10000)
    r1 = RR(m1).nearby_rational(max_denominator=10000)
    if r0 != -r1:
        raise RuntimeError
    r0 = r0.abs()
    if r[0][1] > 0:
        return QQ.one() - r0
    else:
        return r0

    if check:
        e = r.change_ring(AA).eigenvalues()[0]
        if e.minpoly() != ZZ['x'].cyclotomic_polynomial()(r.denominator()):
            raise RuntimeError
        z = QQbar.zeta(r.denominator())
        if z**r.numerator() != e:
            raise RuntimeError

    return r
Exemplo n.º 13
0
def as_embedded_number_field_elements(algs):
    try:
        nf, elts, _ = number_field_elements_from_algebraics(algs, embedded=True)
    except NotImplementedError: # compatibility with Sage <= 9.3
        nf, elts, emb = number_field_elements_from_algebraics(algs)
        if nf is not QQ:
            nf = NumberField(nf.polynomial(), nf.variable_name(),
                        embedding=emb(nf.gen()))
            elts = [elt.polynomial()(nf.gen()) for elt in elts]
            nf, hom = good_number_field(nf)
            elts = [hom(elt) for elt in elts]
        assert [QQbar.coerce(elt) == alg for alg, elt in zip(algs, elts)]
    return nf, elts
Exemplo n.º 14
0
def is_cosine_sine_of_rational(c, s):
    r"""
    Check whether the given pair is a cosine and sine of a same rational angle.

    EXAMPLES::

        sage: from flatsurf.geometry.matrix_2x2 import is_cosine_sine_of_rational

        sage: c = s = AA(sqrt(2))/2
        sage: is_cosine_sine_of_rational(c,s)
        True
        sage: c = AA(sqrt(3))/2; s = AA(1/2)
        sage: is_cosine_sine_of_rational(c,s)
        True

        sage: c = AA(sqrt(5)/2); s = (1 - c**2).sqrt()
        sage: c**2 + s**2
        1.000000000000000?
        sage: is_cosine_sine_of_rational(c,s)
        False

        sage: c = (AA(sqrt(5)) + 1)/4; s = (1 - c**2).sqrt()
        sage: is_cosine_sine_of_rational(c,s)
        True

        sage: K.<sqrt2> = NumberField(x**2 - 2, embedding=1.414)
        sage: is_cosine_sine_of_rational(K.zero(),-K.one())
        True

    TESTS::

        sage: from pyexactreal import ExactReals # optional: exactreal
        sage: R = ExactReals() # optional: exactreal
        sage: is_cosine_sine_of_rational(R.one(), R.zero()) # optional: exactreal
        True

    """
    return (QQbar(c) + QQbar.gen() * QQbar(s)).minpoly().is_cyclotomic()
Exemplo n.º 15
0
def _try_merge_conjugate_singularities(dop, sing, base, todo):
    if any(c not in QQ for pol in dop for c in pol):
        return False
    need_conjugates = False
    sgn = 1 if QQbar.coerce(base.value).imag() >= 0 else -1
    for x in sing:
        if sgn * x.imag() < 0:
            need_conjugates = True
            del todo[x]
            xconj = x.conjugate()
            if xconj not in todo:
                todo[xconj] = LocalMonodromyData()
            todo[xconj].want_conj = True
    return need_conjugates
Exemplo n.º 16
0
 def is_ordinary(self):
     if self._force_singular:
         return False
     lc = self.dop.leading_coefficient()
     if not lc(self.iv()).contains_zero():
         return True
     if self.is_exact():
         try:
             val = lc(self.value)
         except TypeError:  # work around coercion weaknesses
             val = lc.change_ring(QQbar)(QQbar.coerce(self.value))
         return not val.is_zero()
     else:
         raise ValueError("can't tell if inexact point is singular")
Exemplo n.º 17
0
    def delta(self):
        r"""
        TESTS::

            sage: from ore_algebra import *
            sage: Dops, x, Dx = DifferentialOperators()
            sage: (Dx - 1).numerical_solution([1], [0, RealField(10)(.33), 1])
            [2.71828182845904...]
        """
        z0, z1 = self.start.value, self.end.value
        if z0.parent() is z1.parent():
            return z1 - z0
        elif (isinstance(z0, (RealBall, ComplexBall))
              and isinstance(z1, (RealBall, ComplexBall))):
            p0, p1 = z0.parent().precision(), z1.parent().precision()
            real = isinstance(z0, RealBall) and isinstance(z1, RealBall)
            Tgt = (RealBallField if real else ComplexBallField)(max(p0, p1))
            return Tgt(z1) - Tgt(z0)
        else:  # XXX not great when one is in a number field != QQ[i]
            if self.start.is_exact():
                z0 = self.start.exact().value
            if self.end.is_exact():
                z1 = self.end.exact().value
            try:
                d = z1 - z0
            except TypeError:
                # Should be coercions, but embedded number fields currently
                # don't coerce into QQbar...
                d = QQbar(z1) - QQbar(z0)
            # When z0, z1 are number field elements, we want another number
            # field element, not an element of QQbar or AA (even though z1-z0
            # may succeed and return such an element).
            if d.parent() is z0.parent() or d.parent() is z1.parent():
                return d
            else:
                return as_embedded_number_field_element(d)
Exemplo n.º 18
0
    def check_tempered(self):
        r"""
        Check that this representation is tempered (after twisting by
        `|\det|^{j/2}`), i.e. that `|\chi_1(p)| = |\chi_2(p)| = p^{(j + 1)/2}`.
        This follows from the Ramanujan--Petersson conjecture, as proved by
        Deligne.

        EXAMPLE::

            sage: LocalComponent(Newform('49a'), 3).check_tempered()
        """
        c1, c2 = self.characters()
        K = c1.base_ring()
        p = self.prime()
        w = QQbar(p)**((1 + self.twist_factor()) / 2)
        for sigma in K.embeddings(QQbar):
            assert sigma(c1(p)).abs() == sigma(c2(p)).abs() == w
Exemplo n.º 19
0
    def check_tempered(self):
        r"""
        Check that this representation is tempered (after twisting by
        `|\det|^{j/2}` where `j` is the twist factor). Since local components
        of modular forms are always tempered, this is a useful check on our
        calculations.

        EXAMPLE::

            sage: Pi = LocalComponent(Newforms(DirichletGroup(21)([-1, 1]), 3, names='j')[0], 7)
            sage: Pi.check_tempered()
        """
        c1 = self.characters()[0]
        K = c1.base_ring()
        p = self.prime()
        w = QQbar(p)**(self.twist_factor() / ZZ(2))
        for sigma in K.embeddings(QQbar):
            assert sigma(c1(p)).abs() == w
Exemplo n.º 20
0
    def check_tempered(self):
        r"""
        Check that this representation is tempered (after twisting by
        `|\det|^{j/2}` where `j` is the twist factor). Since local components
        of modular forms are always tempered, this is a useful check on our
        calculations.

        Since the computation of the characters attached to this representation
        is not implemented in the odd-conductor case, a NotImplementedError
        will be raised for such representations.

        EXAMPLES::

            sage: LocalComponent(Newform("50a"), 5).check_tempered()
            sage: LocalComponent(Newform("27a"), 3).check_tempered()
        """
        c1, c2 = self.characters()
        K = c1.base_ring()
        p = self.prime()
        w = QQbar(p)**self.twist_factor()
        for sigma in K.embeddings(QQbar):
            assert sigma(c1(p)).abs() == sigma(c2(p)).abs() == w
Exemplo n.º 21
0
def _monodromy_matrices(dop, base, eps=1e-16, sing=None):
    r"""
    EXAMPLES::

        sage: from ore_algebra import *
        sage: from ore_algebra.analytic.monodromy import _monodromy_matrices
        sage: Dops, x, Dx = DifferentialOperators()
        sage: rat = 1/(x^2-1)
        sage: dop = (rat*Dx - rat.derivative()).lclm(Dx*x*Dx)
        sage: [rec.point for rec in _monodromy_matrices(dop, 0) if not rec.is_scalar]
        [0]

    TESTS::

        sage: from ore_algebra.examples import fcc
        sage: mon = list(_monodromy_matrices(fcc.dop5, -1, 2**(-2**7))) # long time (2.3 s)
        sage: [rec.monodromy[0][0] for rec in mon if rec.point == -5/3] # long time
        [[1.01088578589319884254557667137848...]]

    Thanks to Alexandre Goyer for this example::

        sage: L1 = ((x^5 - x^4 + x^3)*Dx^3 + (27/8*x^4 - 25/9*x^3 + 8*x^2)*Dx^2
        ....:      + (37/24*x^3 - 25/9*x^2 + 14*x)*Dx - 2*x^2 - 3/4*x + 4)
        sage: L2 = ((x^5 - 9/4*x^4 + x^3)*Dx^3 + (11/6*x^4 - 31/4*x^3 + 7*x^2)*Dx^2
        ....:      + (7/30*x^3 - 101/20*x^2 + 10*x)*Dx + 4/5*x^2 + 5/6*x + 2)
        sage: L = L1*L2
        sage: L = L.parent()(L.annihilator_of_composition(x+1))
        sage: mon = list(_monodromy_matrices(L, 0, eps=1e-30)) # long time (1.3-1.7 s)
        sage: mon[-1][0], mon[-1][1][0][0] # long time
        (0.6403882032022075?,
        [1.15462187280628880820271...] + [-0.018967673022432256251718...]*I)
    """
    dop = DifferentialOperator(dop)
    base = QQbar.coerce(base)
    eps = RBF(eps)
    if sing is None:
        sing = dop._singularities(QQbar)
    else:
        sing = [QQbar.coerce(s) for s in sing]

    todo = {x: TodoItem(x, dop, want_self=True, want_conj=False) for x in sing}
    base = todo.setdefault(base, TodoItem(base, dop))
    if not base.point().is_regular():
        raise ValueError("irregular singular base point")
    # If the coefficients are rational, reduce to handling singularities in the
    # same half-plane as the base point, and share some computations between
    # Galois conjugates.
    need_conjugates = False
    crit_cache = None
    if all(c in QQ for pol in dop for c in pol):
        need_conjugates = _merge_conjugate_singularities(dop, sing, base, todo)
        # TODO: do something like that even over number fields?
        # XXX this is actually a bit costly: do it only after checking that the
        # monodromy is not scalar?
        # XXX keep the cache from one run to the next when increasing prec?
        crit_cache = {}

    Scalars = ComplexBallField(utilities.prec_from_eps(eps))
    id_mat = matrix.identity_matrix(Scalars, dop.order())

    def matprod(elts):
        return prod(reversed(elts), id_mat)

    for key, todoitem in list(todo.items()):
        point = todoitem.point()
        # We could call _local_monodromy_loop() if point is irregular, but
        # delaying it may allow us to start returning results earlier.
        if point.is_regular():
            if crit_cache is None or point.algdeg() == 1:
                crit = _critical_monomials(dop.shift(point))
                emb = point.value.parent().hom(Scalars)
            else:
                mpol = point.value.minpoly()
                try:
                    NF, crit = crit_cache[mpol]
                except KeyError:
                    NF = point.value.parent()
                    crit = _critical_monomials(dop.shift(point))
                    # Only store the critical monomials for reusing when all
                    # local exponents are rational. We need to restrict to this
                    # case because we do not have the technology in place to
                    # follow algebraic exponents along the embedding of NF in ℂ.
                    # (They are represented as elements of "new" number fields
                    # given by as_embedded_number_field_element(), even when
                    # they actually lie in NF itself as opposed to a further
                    # algebraic extension. XXX: Ideally, LocalBasisMapper should
                    # give us access to the tower of extensions in which the
                    # exponents "naturally" live.)
                    if all(sol.leftmost.parent() is QQ for sol in crit):
                        crit_cache[mpol] = NF, crit
                emb = NF.hom([Scalars(point.value.parent().gen())],
                             check=False)
            mon, scalar = _formal_monodromy_from_critical_monomials(crit, emb)
            if scalar:
                # No need to compute the connection matrices then!
                # XXX When we do need them, though, it would be better to get
                # the formal monodromy as a byproduct of their computation.
                if todoitem.want_self:
                    yield LocalMonodromyData(key, mon, True)
                if todoitem.want_conj:
                    conj = key.conjugate()
                    logger.info(
                        "Computing local monodromy around %s by "
                        "complex conjugation", conj)
                    conj_mat = ~mon.conjugate()
                    yield LocalMonodromyData(conj, conj_mat, True)
                if todoitem is not base:
                    del todo[key]
                    continue
            todoitem.local_monodromy = [mon]
            todoitem.polygon = [point]

    if need_conjugates:
        base_conj_mat = dop.numerical_transition_matrix(
            [base.point(), base.point().conjugate()],
            eps,
            assume_analytic=True)

        def conjugate_monodromy(mat):
            return ~base_conj_mat * ~mat.conjugate() * base_conj_mat

    tree = _spanning_tree(base, todo.values())

    def dfs(x, path, path_mat):

        logger.info("Computing local monodromy around %s via %s", x, path)

        local_mat = matprod(x.local_monodromy)
        based_mat = (~path_mat) * local_mat * path_mat

        if x.want_self:
            yield LocalMonodromyData(x.alg, based_mat, False)
        if x.want_conj:
            conj = x.alg.conjugate()
            logger.info(
                "Computing local monodromy around %s by complex "
                "conjugation", conj)
            conj_mat = conjugate_monodromy(based_mat)
            yield LocalMonodromyData(conj, conj_mat, False)

        x.done = True

        for y in tree.neighbors(x):
            if y.done:
                continue
            if y.local_monodromy is None:
                y.polygon, y.local_monodromy = _local_monodromy_loop(
                    dop, y.point(), eps)
            new_path_mat = _extend_path_mat(dop, path_mat, x, y, eps, matprod)
            yield from dfs(y, path + [y], new_path_mat)

    yield from dfs(base, [base], id_mat)
Exemplo n.º 22
0
def _monodromy_matrices(dop, base, eps=1e-16, sing=None):
    r"""
    EXAMPLES::

        sage: from ore_algebra import *
        sage: from ore_algebra.analytic.monodromy import _monodromy_matrices
        sage: Dops, x, Dx = DifferentialOperators()
        sage: rat = 1/(x^2-1)
        sage: dop = (rat*Dx - rat.derivative()).lclm(Dx*x*Dx)
        sage: [rec.point for rec in _monodromy_matrices(dop, 0) if not rec.is_scalar]
        [0]
    """
    dop = DifferentialOperator(dop)
    base = QQbar.coerce(base)
    eps = RBF(eps)
    if sing is None:
        sing = dop._singularities(QQbar)
    else:
        sing = [QQbar.coerce(s) for s in sing]

    todo = {
        x: PointWithMonodromyData(x, dop, want_self=True, want_conj=False)
        for x in sing
    }
    base = todo.setdefault(base, PointWithMonodromyData(base, dop))
    if not base.is_regular():
        raise ValueError("irregular singular base point")
    # If the coefficients are rational, reduce to handling singularities in the
    # same half-plane as the base point.
    need_conjugates = _try_merge_conjugate_singularities(dop, sing, base, todo)

    Scalars = ComplexBallField(utilities.prec_from_eps(eps))
    id_mat = matrix.identity_matrix(Scalars, dop.order())

    def matprod(elts):
        return prod(reversed(elts), id_mat)

    for key, point in list(todo.items()):
        # We could call _local_monodromy_loop() if point is irregular, but
        # delaying it may allow us to start returning results earlier.
        if point.is_regular():
            mon, scalar = _formal_monodromy_naive(dop.shift(point), Scalars)
            if scalar:
                # No need to compute the connection matrices then!
                # XXX When we do need them, though, it would be better to get
                # the formal monodromy as a byproduct of their computation.
                if point.want_self:
                    yield LocalMonodromyData(QQbar(point), mon, True)
                if point.want_conj:
                    conj = point.conjugate()
                    logger.info(
                        "Computing local monodromy around %s by "
                        "complex conjugation", conj)
                    conj_mat = ~mon.conjugate()
                    yield LocalMonodromyData(QQbar(conj), conj_mat, True)
                if point is not base:
                    del todo[key]
                    continue
            point.local_monodromy = [mon]
            point.polygon = [point]

    if need_conjugates:
        base_conj_mat = dop.numerical_transition_matrix(
            [base, base.conjugate()], eps, assume_analytic=True)

        def conjugate_monodromy(mat):
            return ~base_conj_mat * ~mat.conjugate() * base_conj_mat

    tree = _spanning_tree(base, todo.values())

    def dfs(x, path, path_mat):

        logger.info("Computing local monodromy around %s via %s", x, path)

        local_mat = matprod(x.local_monodromy)
        based_mat = (~path_mat) * local_mat * path_mat

        if x.want_self:
            yield LocalMonodromyData(QQbar(x), based_mat, False)
        if x.want_conj:
            conj = x.conjugate()
            logger.info(
                "Computing local monodromy around %s by complex "
                "conjugation", conj)
            conj_mat = conjugate_monodromy(based_mat)
            yield LocalMonodromyData(QQbar(x), conj_mat, False)

        x.done = True

        for y in tree.neighbors(x):
            if y.done:
                continue
            if y.local_monodromy is None:
                y.polygon, y.local_monodromy = _local_monodromy_loop(
                    dop, y, eps)
            new_path_mat = _extend_path_mat(dop, path_mat, x, y, eps, matprod)
            yield from dfs(y, path + [y], new_path_mat)

    yield from dfs(base, [base], id_mat)
Exemplo n.º 23
0
    def _coerce_map_from_(self, P):
        r"""
        Return whether ``P`` coerces into this symbolic subring.

        INPUT:

        - ``P`` -- a parent.

        OUTPUT:

        A boolean or ``None``.

        TESTS::

            sage: from sage.symbolic.subring import GenericSymbolicSubring
            sage: GenericSymbolicSubring(vars=tuple()).has_coerce_map_from(SR)  # indirect doctest  # not tested see #19231
            False

        ::
            sage: from sage.symbolic.subring import SymbolicSubring
            sage: C = SymbolicSubring(no_variables=True)
            sage: C.has_coerce_map_from(ZZ)  # indirect doctest
            True
            sage: C.has_coerce_map_from(QQ)  # indirect doctest
            True
            sage: C.has_coerce_map_from(RR)  # indirect doctest
            True
            sage: C.has_coerce_map_from(RIF)  # indirect doctest
            True
            sage: C.has_coerce_map_from(CC)  # indirect doctest
            True
            sage: C.has_coerce_map_from(CIF)  # indirect doctest
            True
            sage: C.has_coerce_map_from(AA)  # indirect doctest
            True
            sage: C.has_coerce_map_from(QQbar)  # indirect doctest
            True
            sage: C.has_coerce_map_from(SR)  # indirect doctest
            False
        """
        if P == SR:
            # Workaround; can be deleted once #19231 is fixed
            return False

        from sage.rings.real_mpfr import mpfr_prec_min
        from sage.rings.all import (ComplexField, RLF, CLF, AA, QQbar,
                                    InfinityRing)
        from sage.rings.real_mpfi import is_RealIntervalField
        from sage.rings.complex_interval_field import is_ComplexIntervalField

        if isinstance(P, type):
            return SR._coerce_map_from_(P)

        elif RLF.has_coerce_map_from(P) or \
             CLF.has_coerce_map_from(P) or \
             AA.has_coerce_map_from(P) or \
             QQbar.has_coerce_map_from(P):
            return True

        elif (P is InfinityRing or is_RealIntervalField(P)
              or is_ComplexIntervalField(P)):
            return True

        elif ComplexField(mpfr_prec_min()).has_coerce_map_from(P):
            return P not in (RLF, CLF, AA, QQbar)
Exemplo n.º 24
0
 def conjugate(self):
     value = QQbar.coerce(self.value).conjugate()
     return Point(value, self.dop, **self.options)
Exemplo n.º 25
0
 def valuation(self):
     return QQbar(self.leftmost + self.shift)  # alg vs NFelt for re, im
Exemplo n.º 26
0
 def _sing_as_alg(dop, iv):
     pol = dop.leading_coefficient().radical()
     return QQbar.polynomial_root(pol, CIF(iv))
Exemplo n.º 27
0
    def __init__(self, point, dop=None):
        """
        TESTS::

            sage: from ore_algebra import *
            sage: from ore_algebra.analytic.path import Point
            sage: Dops, x, Dx = DifferentialOperators()
            sage: [Point(z, Dx)
            ....:  for z in [1, 1/2, 1+I, QQbar(I), RIF(1/3), CIF(1/3), pi,
            ....:  RDF(1), CDF(I), 0.5r, 0.5jr, 10r, QQbar(1), AA(1/3)]]
            [1, 1/2, I + 1, I, [0.333333333333333...], [0.333333333333333...],
            3.141592653589794?, 1.000000000000000, 1.000000000000000*I,
            0.5000000000000000, 0.5000000000000000*I, 10, 1, 1/3]
            sage: Point(sqrt(2), Dx).iv()
            [1.414...]
        """
        SageObject.__init__(self)

        from sage.rings.complex_double import ComplexDoubleField_class
        from sage.rings.complex_field import ComplexField_class
        from sage.rings.complex_interval_field import ComplexIntervalField_class
        from sage.rings.real_double import RealDoubleField_class
        from sage.rings.real_mpfi import RealIntervalField_class
        from sage.rings.real_mpfr import RealField_class

        point = sage.structure.coerce.py_scalar_to_element(point)
        try:
            parent = point.parent()
        except AttributeError:
            raise TypeError("unexpected value for point: " + repr(point))
        if isinstance(point, Point):
            self.value = point.value
        elif isinstance(
                parent,
            (number_field_base.NumberField, RealBallField, ComplexBallField)):
            self.value = point
        elif QQ.has_coerce_map_from(parent):
            self.value = QQ.coerce(point)
        # must come before QQbar, due to a bogus coerce map (#14485)
        elif parent is sage.symbolic.ring.SR:
            try:
                return self.__init__(point.pyobject(), dop)
            except TypeError:
                pass
            try:
                return self.__init__(QQbar(point), dop)
            except (TypeError, ValueError, NotImplementedError):
                pass
            try:
                self.value = RLF(point)
            except (TypeError, ValueError):
                self.value = CLF(point)
        elif QQbar.has_coerce_map_from(parent):
            alg = QQbar.coerce(point)
            NF, val, hom = alg.as_number_field_element()
            if NF is QQ:
                self.value = QQ.coerce(val)  # parent may be ZZ
            else:
                embNF = number_field.NumberField(NF.polynomial(),
                                                 NF.variable_name(),
                                                 embedding=hom(NF.gen()))
                self.value = val.polynomial()(embNF.gen())
        elif isinstance(
                parent,
            (RealField_class, RealDoubleField_class, RealIntervalField_class)):
            self.value = RealBallField(point.prec())(point)
        elif isinstance(parent, (ComplexField_class, ComplexDoubleField_class,
                                 ComplexIntervalField_class)):
            self.value = ComplexBallField(point.prec())(point)
        else:
            try:
                self.value = RLF.coerce(point)
            except TypeError:
                self.value = CLF.coerce(point)
        parent = self.value.parent()
        assert (isinstance(
            parent,
            (number_field_base.NumberField, RealBallField, ComplexBallField))
                or parent is RLF or parent is CLF)

        self.dop = dop or point.dop

        self.keep_value = False
Exemplo n.º 28
0
def _test_monodromy_matrices():
    r"""
    TESTS::

        sage: from ore_algebra.analytic.monodromy import _test_monodromy_matrices
        sage: _test_monodromy_matrices()
    """
    from sage.all import matrix
    from ore_algebra import DifferentialOperators
    Dops, x, Dx = DifferentialOperators()

    h = QQ(1) / 2
    i = QQi.gen()

    def norm(m):
        return sum(c.abs()**2 for c in m.list()).sqrtpos()

    mon = monodromy_matrices((x**2 + 1) * Dx - 1, QQ(1000000))
    assert norm(mon[0] - CBF(pi).exp()) < RBF(1e-10)
    assert norm(mon[1] - CBF(-pi).exp()) < RBF(1e-10)

    mon = monodromy_matrices((x**2 - 1) * Dx - 1, QQ(0))
    assert all(m == -1 for m in mon)

    dop = (x**2 + 1) * Dx**2 + 2 * x * Dx
    mon = monodromy_matrices(dop, QQbar(i + 1))  # mon[0] <--> i
    assert norm(mon[0] - matrix(CBF, [[1, pi *
                                       (1 + 2 * i)], [0, 1]])) < RBF(1e-10)
    assert norm(mon[1] - matrix(CBF, [[1, -pi *
                                       (1 + 2 * i)], [0, 1]])) < RBF(1e-10)
    mon = monodromy_matrices(dop, QQbar(-i + 1))  # mon[0] <--> -i
    assert norm(mon[0] - matrix(CBF, [[1, pi *
                                       (-1 + 2 * i)], [0, 1]])) < RBF(1e-10)
    assert norm(mon[1] - matrix(CBF, [[1, pi *
                                       (1 - 2 * i)], [0, 1]])) < RBF(1e-10)
    mon = monodromy_matrices(dop, QQbar(i))  # mon[0] <--> i
    assert norm(mon[0] - matrix(CBF, [[1, 0], [2 * pi * i, 1]])) < RBF(1e-10)
    assert norm(mon[1] - matrix(CBF, [[1, 0], [-2 * pi * i, 1]])) < RBF(1e-10)
    mon = monodromy_matrices(dop, QQbar(i), sing=[QQbar(i)])
    assert len(mon) == 1
    assert norm(mon[0] - matrix(CBF, [[1, 0], [2 * pi * i, 1]])) < RBF(1e-10)
    mon = monodromy_matrices(dop, QQbar(i), sing=[QQbar(-i)])
    assert len(mon) == 1
    assert norm(mon[0] - matrix(CBF, [[1, 0], [-2 * pi * i, 1]])) < RBF(1e-10)
    mon = monodromy_matrices(dop, QQbar(-i), sing=[QQbar(i)])
    assert len(mon) == 1
    assert norm(mon[0] - matrix(CBF, [[1, 0], [-2 * pi * i, 1]])) < RBF(1e-10)
    mon = monodromy_matrices(dop, QQbar(i), sing=[])
    assert mon == []

    dop = (x**2 + 1) * (x**2 - 1) * Dx**2 + 1
    mon = monodromy_matrices(dop, QQ(0), sing=[QQ(1), QQbar(i)])
    m0 = dop.numerical_transition_matrix([0, i + 1, 2 * i, i - 1, 0])
    assert norm(m0 - mon[0]) < RBF(1e-10)
    m1 = dop.numerical_transition_matrix([0, 1 - i, 2, 1 + i, 0])
    assert norm(m1 - mon[1]) < RBF(1e-10)

    dop = x * (x - 3) * (x - 4) * (x**2 - 6 * x + 10) * Dx**2 - 1
    mon = monodromy_matrices(dop, QQ(-1))
    m0 = dop.numerical_transition_matrix([-1, -i, 1, i, -1])
    assert norm(m0 - mon[0]) < RBF(1e-10)
    m1 = dop.numerical_transition_matrix(
        [-1, i / 2, 3 - i / 2, 3 + h, 3 + i / 2, i / 2, -1])
    assert norm(m1 - mon[1]) < RBF(1e-10)
    m2 = dop.numerical_transition_matrix(
        [-1, i / 2, 3 + i / 2, 4 - i / 2, 4 + h, 4 + i / 2, i / 2, -1])
    assert norm(m2 - mon[2]) < RBF(1e-10)
    m3 = dop.numerical_transition_matrix([-1, 3 + i + h, 3 + 2 * i, -1])
    assert norm(m3 - mon[3]) < RBF(1e-10)
    m4 = dop.numerical_transition_matrix(
        [-1, 3 - 2 * i, 3 - i + h, 3 - i / 2, -1])
    assert norm(m4 - mon[4]) < RBF(1e-10)

    dop = (x - i)**2 * (x + i) * Dx - 1
    mon = monodromy_matrices(dop, 0)
    assert norm(mon[0] + i) < RBF(1e-10)
    assert norm(mon[1] - i) < RBF(1e-10)

    dop = (x - i)**2 * (x + i) * Dx**2 - 1
    mon = monodromy_matrices(dop, 0)
    m0 = dop.numerical_transition_matrix([0, i + 1, 2 * i, i - 1, 0])
    assert norm(m0 - mon[0]) < RBF(1e-10)
    m1 = dop.numerical_transition_matrix([0, -i - 1, -2 * i, -i + 1, 0])
    assert norm(m1 - mon[1]) < RBF(1e-10)
Exemplo n.º 29
0
    def __init__(self, point, dop=None, singular=None, **kwds):
        """
        INPUT:

        - ``singular``: can be set to True to force this point to be considered
          a singular point, even if this cannot be checked (e.g. because we only
          have an enclosure)

        TESTS::

            sage: from ore_algebra import *
            sage: from ore_algebra.analytic.path import Point
            sage: Dops, x, Dx = DifferentialOperators()
            sage: [Point(z, Dx)
            ....:  for z in [1, 1/2, 1+I, QQbar(I), RIF(1/3), CIF(1/3), pi,
            ....:  RDF(1), CDF(I), 0.5r, 0.5jr, 10r, QQbar(1), AA(1/3)]]
            [1, 1/2, I + 1, I, [0.333333333333333...], [0.333333333333333...],
            3.141592653589794?, ~1.0000, ~1.0000*I, ~0.50000, ~0.50000*I, 10,
            1, 1/3]
            sage: Point(sqrt(2), Dx).iv()
            [1.414...]
            sage: Point(RBF(0), (x-1)*x*Dx, singular=True).dist_to_sing()
            1.000000000000000
        """
        SageObject.__init__(self)

        from sage.rings.complex_double import ComplexDoubleField_class
        from sage.rings.complex_field import ComplexField_class
        from sage.rings.complex_interval_field import ComplexIntervalField_class
        from sage.rings.real_double import RealDoubleField_class
        from sage.rings.real_mpfi import RealIntervalField_class
        from sage.rings.real_mpfr import RealField_class

        point = sage.structure.coerce.py_scalar_to_element(point)
        try:
            parent = point.parent()
        except AttributeError:
            raise TypeError("unexpected value for point: " + repr(point))
        if isinstance(point, Point):
            self.value = point.value
        elif isinstance(parent, (RealBallField, ComplexBallField)):
            self.value = point
        elif isinstance(parent, number_field_base.NumberField):
            _, hom = good_number_field(point.parent())
            self.value = hom(point)
        elif QQ.has_coerce_map_from(parent):
            self.value = QQ.coerce(point)
        elif QQbar.has_coerce_map_from(parent):
            alg = QQbar.coerce(point)
            NF, val, hom = alg.as_number_field_element()
            if NF is QQ:
                self.value = QQ.coerce(val)  # parent may be ZZ
            else:
                embNF = number_field.NumberField(NF.polynomial(),
                                                 NF.variable_name(),
                                                 embedding=hom(NF.gen()))
                self.value = val.polynomial()(embNF.gen())
        elif isinstance(
                parent,
            (RealField_class, RealDoubleField_class, RealIntervalField_class)):
            self.value = RealBallField(point.prec())(point)
        elif isinstance(parent, (ComplexField_class, ComplexDoubleField_class,
                                 ComplexIntervalField_class)):
            self.value = ComplexBallField(point.prec())(point)
        elif parent is sage.symbolic.ring.SR:
            try:
                return self.__init__(point.pyobject(), dop)
            except TypeError:
                pass
            try:
                return self.__init__(QQbar(point), dop)
            except (TypeError, ValueError, NotImplementedError):
                pass
            try:
                self.value = RLF(point)
            except (TypeError, ValueError):
                self.value = CLF(point)
        else:
            try:
                self.value = RLF.coerce(point)
            except TypeError:
                self.value = CLF.coerce(point)

        parent = self.value.parent()
        assert (isinstance(
            parent,
            (number_field_base.NumberField, RealBallField, ComplexBallField))
                or parent is RLF or parent is CLF)

        if dop is None:  # TBI
            if isinstance(point, Point):
                self.dop = point.dop
        else:
            self.dop = DifferentialOperator(dop.numerator())
        self._force_singular = bool(singular)
        self.options = kwds
Exemplo n.º 30
0
def _monodromy_matrices(dop, base, eps=1e-16, sing=None):
    r"""
    EXAMPLES::

        sage: from ore_algebra import *
        sage: from ore_algebra.analytic.monodromy import _monodromy_matrices
        sage: Dops, x, Dx = DifferentialOperators()
        sage: rat = 1/(x^2-1)
        sage: dop = (rat*Dx - rat.derivative()).lclm(Dx*x*Dx)
        sage: [rec.point for rec in _monodromy_matrices(dop, 0) if not rec.is_scalar]
        [0]

    TESTS::

        sage: from ore_algebra.examples import fcc
        sage: mon = list(_monodromy_matrices(fcc.dop5, -1, 2**(-2**7))) # long time (2.3 s)
        sage: [rec.monodromy[0][0] for rec in mon if rec.point == -5/3] # long time
        [[1.01088578589319884254557667137848...]]
    """
    dop = DifferentialOperator(dop)
    base = QQbar.coerce(base)
    eps = RBF(eps)
    if sing is None:
        sing = dop._singularities(QQbar)
    else:
        sing = [QQbar.coerce(s) for s in sing]

    todo = {x: TodoItem(x, dop, want_self=True, want_conj=False) for x in sing}
    base = todo.setdefault(base, TodoItem(base, dop))
    if not base.point().is_regular():
        raise ValueError("irregular singular base point")
    # If the coefficients are rational, reduce to handling singularities in the
    # same half-plane as the base point, and share some computations between
    # Galois conjugates.
    need_conjugates = False
    crit_cache = None
    if all(c in QQ for pol in dop for c in pol):
        need_conjugates = _merge_conjugate_singularities(dop, sing, base, todo)
        # TODO: do something like that even over number fields?
        # XXX this is actually a bit costly: do it only after checking that the
        # monodromy is not scalar?
        # XXX keep the cache from one run to the next when increasing prec?
        crit_cache = {}

    Scalars = ComplexBallField(utilities.prec_from_eps(eps))
    id_mat = matrix.identity_matrix(Scalars, dop.order())

    def matprod(elts):
        return prod(reversed(elts), id_mat)

    for key, todoitem in list(todo.items()):
        point = todoitem.point()
        # We could call _local_monodromy_loop() if point is irregular, but
        # delaying it may allow us to start returning results earlier.
        if point.is_regular():
            if crit_cache is None or point.algdeg() == 1:
                crit = _critical_monomials(dop.shift(point))
                emb = point.value.parent().hom(Scalars)
            else:
                mpol = point.value.minpoly()
                try:
                    NF, crit = crit_cache[mpol]
                except KeyError:
                    NF = point.value.parent()
                    crit = _critical_monomials(dop.shift(point))
                    crit_cache[mpol] = NF, crit
                emb = NF.hom([Scalars(point.value.parent().gen())],
                             check=False)
            mon, scalar = _formal_monodromy_from_critical_monomials(crit, emb)
            if scalar:
                # No need to compute the connection matrices then!
                # XXX When we do need them, though, it would be better to get
                # the formal monodromy as a byproduct of their computation.
                if todoitem.want_self:
                    yield LocalMonodromyData(key, mon, True)
                if todoitem.want_conj:
                    conj = key.conjugate()
                    logger.info(
                        "Computing local monodromy around %s by "
                        "complex conjugation", conj)
                    conj_mat = ~mon.conjugate()
                    yield LocalMonodromyData(conj, conj_mat, True)
                if todoitem is not base:
                    del todo[key]
                    continue
            todoitem.local_monodromy = [mon]
            todoitem.polygon = [point]

    if need_conjugates:
        base_conj_mat = dop.numerical_transition_matrix(
            [base.point(), base.point().conjugate()],
            eps,
            assume_analytic=True)

        def conjugate_monodromy(mat):
            return ~base_conj_mat * ~mat.conjugate() * base_conj_mat

    tree = _spanning_tree(base, todo.values())

    def dfs(x, path, path_mat):

        logger.info("Computing local monodromy around %s via %s", x, path)

        local_mat = matprod(x.local_monodromy)
        based_mat = (~path_mat) * local_mat * path_mat

        if x.want_self:
            yield LocalMonodromyData(x.alg, based_mat, False)
        if x.want_conj:
            conj = x.alg.conjugate()
            logger.info(
                "Computing local monodromy around %s by complex "
                "conjugation", conj)
            conj_mat = conjugate_monodromy(based_mat)
            yield LocalMonodromyData(conj, conj_mat, False)

        x.done = True

        for y in tree.neighbors(x):
            if y.done:
                continue
            if y.local_monodromy is None:
                y.polygon, y.local_monodromy = _local_monodromy_loop(
                    dop, y.point(), eps)
            new_path_mat = _extend_path_mat(dop, path_mat, x, y, eps, matprod)
            yield from dfs(y, path + [y], new_path_mat)

    yield from dfs(base, [base], id_mat)
Exemplo n.º 31
0
    def _coerce_map_from_(self, P):
        r"""
        Return whether ``P`` coerces into this symbolic subring.

        INPUT:

        - ``P`` -- a parent.

        OUTPUT:

        A boolean or ``None``.

        TESTS::

            sage: from sage.symbolic.subring import GenericSymbolicSubring
            sage: GenericSymbolicSubring(vars=tuple()).has_coerce_map_from(SR)  # indirect doctest  # not tested see #19231
            False

        ::
            sage: from sage.symbolic.subring import SymbolicSubring
            sage: C = SymbolicSubring(no_variables=True)
            sage: C.has_coerce_map_from(ZZ)  # indirect doctest
            True
            sage: C.has_coerce_map_from(QQ)  # indirect doctest
            True
            sage: C.has_coerce_map_from(RR)  # indirect doctest
            True
            sage: C.has_coerce_map_from(RIF)  # indirect doctest
            True
            sage: C.has_coerce_map_from(CC)  # indirect doctest
            True
            sage: C.has_coerce_map_from(CIF)  # indirect doctest
            True
            sage: C.has_coerce_map_from(AA)  # indirect doctest
            True
            sage: C.has_coerce_map_from(QQbar)  # indirect doctest
            True
            sage: C.has_coerce_map_from(SR)  # indirect doctest
            False
        """
        if P == SR:
            # Workaround; can be deleted once #19231 is fixed
            return False

        from sage.rings.real_mpfr import mpfr_prec_min
        from sage.rings.all import (ComplexField,
                                    RLF, CLF, AA, QQbar, InfinityRing)
        from sage.rings.real_mpfi import is_RealIntervalField
        from sage.rings.complex_interval_field import is_ComplexIntervalField

        if isinstance(P, type):
            return SR._coerce_map_from_(P)

        elif RLF.has_coerce_map_from(P) or \
             CLF.has_coerce_map_from(P) or \
             AA.has_coerce_map_from(P) or \
             QQbar.has_coerce_map_from(P):
            return True

        elif (P is InfinityRing or
              is_RealIntervalField(P) or is_ComplexIntervalField(P)):
            return True

        elif ComplexField(mpfr_prec_min()).has_coerce_map_from(P):
            return P not in (RLF, CLF, AA, QQbar)