Exemplo n.º 1
0
    def valuation(self, p):
        r"""
        Return the discrete valuation with uniformizer ``p``.

        EXAMPLES::

            sage: v = QQ.valuation(3); v
            3-adic valuation
            sage: v(1/3)
            -1

        .. SEEALSO::

            :meth:`NumberField_generic.valuation() <sage.rings.number_field.number_field.NumberField_generic.valuation>`,
            :meth:`IntegerRing_class.valuation() <sage.rings.integer_ring.IntegerRing_class.valuation>`

        """
        from sage.rings.padics.padic_valuation import pAdicValuation
        return pAdicValuation(self, p)
Exemplo n.º 2
0
    def valuation(self, p):
        r"""
        Return the discrete valuation with uniformizer ``p``.

        EXAMPLES::

            sage: v = QQ.valuation(3); v
            3-adic valuation
            sage: v(1/3)
            -1

        .. SEEALSO::

            :meth:`NumberField_generic.valuation() <sage.rings.number_field.number_field.NumberField_generic.valuation>`,
            :meth:`IntegerRing_class.valuation() <sage.rings.integer_ring.IntegerRing_class.valuation>`

        """
        from sage.rings.padics.padic_valuation import pAdicValuation
        return pAdicValuation(self, p)
Exemplo n.º 3
0
    def valuation(self):
        r"""
        Return the `p`-adic valuation on this ring.

        OUTPUT:

        a valuation that is normalized such that the rational prime `p` has
        valuation 1.

        EXAMPLES::

            sage: K = Qp(3)
            sage: R.<a> = K[]
            sage: L.<a> = K.extension(a^3 - 3)
            sage: v = L.valuation(); v
            3-adic valuation
            sage: v(3)
            1
            sage: L(3).valuation()
            3

        The normalization is chosen such that the valuation restricts to the
        valuation on the base ring::

            sage: v(3) == K.valuation()(3)
            True
            sage: v.restriction(K) == K.valuation()
            True

        .. SEEALSO::

            :meth:`NumberField_generic.valuation() <sage.rings.number_field.number_field.NumberField_generic.valuation>`,
            :meth:`Order.valuation() <sage.rings.number_field.order.Order.valuation>`

        """
        from sage.rings.padics.padic_valuation import pAdicValuation
        return pAdicValuation(self)
Exemplo n.º 4
0
    def valuation(self):
        r"""
        Return the `p`-adic valuation on this ring.

        OUTPUT:

        a valuation that is normalized such that the rational prime `p` has
        valuation 1.

        EXAMPLES::

            sage: K = Qp(3)
            sage: R.<a> = K[]
            sage: L.<a> = K.extension(a^3 - 3)
            sage: v = L.valuation(); v
            3-adic valuation
            sage: v(3)
            1
            sage: L(3).valuation()
            3

        The normalization is chosen such that the valuation restricts to the
        valuation on the base ring::

            sage: v(3) == K.valuation()(3)
            True
            sage: v.restriction(K) == K.valuation()
            True

        .. SEEALSO::

            :meth:`NumberField_generic.valuation() <sage.rings.number_field.number_field.NumberField_generic.valuation>`,
            :meth:`Order.valuation() <sage.rings.number_field.order.Order.valuation>`

        """
        from sage.rings.padics.padic_valuation import pAdicValuation
        return pAdicValuation(self)