Exemplo n.º 1
0
    def __init__(self, L, q=None):
        """
        Initialize ``self``.

        TESTS::

            sage: L = posets.BooleanLattice(4)
            sage: M = L.quantum_moebius_algebra()
            sage: TestSuite(M).run() # long time
        """
        if not L.is_lattice():
            raise ValueError("L must be a lattice")
        if q is None:
            q = LaurentPolynomialRing(ZZ, 'q').gen()
        self._q = q
        R = q.parent()
        cat = Algebras(R).WithBasis()
        if L in FiniteEnumeratedSets():
            cat = cat.Commutative().FiniteDimensional()
        self._lattice = L
        self._category = cat
        Parent.__init__(self,
                        base=R,
                        category=self._category.WithRealizations())
Exemplo n.º 2
0
 def testJonesPolynomial(self):
     L = LaurentPolynomialRing(QQ, 'q')
     q = L.gen()
     data = [
         ('K3_1', ('q^3 + q - 1', -4)),
         ('K7_2', ('q^7 - q^6 + 2*q^5 - 2*q^4 + 2*q^3 - q^2 + q - 1', -8)),
         ('K8_3',
          ('q^8 - q^7 + 2*q^6 - 3*q^5 + 3*q^4 - 3*q^3 + 2*q^2 - q + 1',
           -4)),
         ('K8_13',
          ('-q^8 + 2*q^7 - 3*q^6 + 5*q^5 - 5*q^4 + 5*q^3 - 4*q^2 + 3*q - 1',
           -3)),
         ('L6a2', ('-q^6 + q^5 - 2*q^4 + 2*q^3 - 2*q^2 + q - 1', 1)),
         ('L6a4', ('-q^6 + 3*q^5 - 2*q^4 + 4*q^3 - 2*q^2 + 3*q - 1', -3)),
         ('L7a3', ('-q^7 + q^6 - 3*q^5 + 2*q^4 - 3*q^3 + 3*q^2 - 2*q + 1',
                   -7)),
         ('L10n1',
          ('q^8 - 2*q^7 + 2*q^6 - 4*q^5 + 3*q^4 - 3*q^3 + 2*q^2 - 2*q + 1',
           -2))
     ]
     for link_name, (poly, exp) in data:
         link = getattr(self, link_name)
         self.assertEqual(link.jones_polynomial(new_convention=False),
                          L(poly) * q**exp)
Exemplo n.º 3
0
    def alexander_polynomial(self,
                             multivar=True,
                             v='no',
                             method='default',
                             norm=True,
                             factored=False):
        """
        Calculates the Alexander polynomial of the link. For links with one component,
        can evaluate the alexander polynomial at v::

            sage: K = Link('4_1')
            sage: K.alexander_polynomial()
            t^2 - 3*t + 1
            sage: K.alexander_polynomial(v=[4])
            5
            
            sage: K = Link('L7n1')
            sage: K.alexander_polynomial(norm=False)
            t2^-1 + t1^-1*t2^-4

        The default algorithm for *knots* is Bar-Natan's super-fast
        tangle-based algorithm.  For links, we apply Fox calculus to a
        Wirtinger presentation for the link::

            sage: L = Link('K13n123')
            sage: L.alexander_polynomial() == L.alexander_polynomial(method='wirtinger')
            True
        """

        # sign normalization still missing, but when "norm=True" the
        # leading coefficient with respect to the first variable is made
        # positive.
        if method == 'snappy':
            try:
                return self.exterior().alexander_polynomial()
            except ImportError:
                raise RuntimeError('this method for alexander_polynomial ' +
                                   no_snappy_msg)
        else:
            comp = len(self.link_components)
            if comp < 2:
                multivar = False

            # If single variable, use the super-fast method of Bar-Natan.
            if comp == 1 and method == 'default' and norm:
                p = alexander.alexander(self)
            else:  # Use a simple method based on the Wirtinger presentation.
                if method not in ['default', 'wirtinger']:
                    raise ValueError(
                        "Available methods are 'default' and 'wirtinger'")

                if (multivar):
                    L = LaurentPolynomialRing(
                        QQ, ['t%d' % (i + 1) for i in range(comp)])
                    t = list(L.gens())
                else:
                    L = LaurentPolynomialRing(QQ, 't')
                    t = [L.gen()]

                M = self.alexander_matrix(mv=multivar)
                C = M[0]
                m = C.nrows()
                n = C.ncols()
                if n > m:
                    k = m - 1
                else:
                    k = n - 1

                subMatrix = C[0:k, 0:k]
                p = subMatrix.determinant()
                if p == 0: return 0
                if multivar:
                    t_i = M[1][-1]
                    p = (p.factor()) / (t_i - 1)
                    p = p.expand()

                if (norm):
                    p = normalize_alex_poly(p, t)

            if v != 'no':
                return p(*v)

            if multivar and factored:  # it's easier to view this way
                return p.factor()
            else:
                return p
Exemplo n.º 4
0
    def _LKB_matrix_(self, braid, variab):
        """
        Compute the Lawrence-Krammer-Bigelow representation matrix.

        The variables of the matrix must be given. This actual
        computation is done in this helper method for caching
        purposes.

        INPUT:

        - ``braid`` -- tuple of integers. The Tietze list of the
          braid.

        - ``variab`` -- string. the names of the variables that will
          appear in the matrix. They must be given as a string,
          separated by a comma

        OUTPUT:

        The LKB matrix of the braid, with respect to the variables.

        TESTS::

            sage: B=BraidGroup(3)
            sage: B._LKB_matrix_((2, 1, 2), 'x, y')
            [             0 -x^4*y + x^3*y         -x^4*y]
            [             0         -x^3*y              0]
            [        -x^2*y  x^3*y - x^2*y              0]
            sage: B._LKB_matrix_((1, 2, 1), 'x, y')
            [             0 -x^4*y + x^3*y         -x^4*y]
            [             0         -x^3*y              0]
            [        -x^2*y  x^3*y - x^2*y              0]
            sage: B._LKB_matrix_((-1, -2, -1, 2, 1, 2), 'x, y')
            [1 0 0]
            [0 1 0]
            [0 0 1]
        """
        n = self.strands()
        if len(braid)>1:
            A = self._LKB_matrix_(braid[:1], variab)
            for i in braid[1:]:
                A = A*self._LKB_matrix_((i,), variab)
            return A
        l = list(Set(range(n)).subsets(2))
        R = LaurentPolynomialRing(IntegerRing(), variab)
        q = R.gens()[0]
        t = R.gens()[1]
        if len(braid)==0:
            return identity_matrix(R, len(l), sparse=True)
        A = matrix(R, len(l), sparse=True)
        if braid[0]>0:
            i = braid[0]-1
            for m in range(len(l)):
                j = min(l[m])
                k = max(l[m])
                if i==j-1:
                    A[l.index(Set([i, k])), m] = q
                    A[l.index(Set([i, j])), m] = q*q-q
                    A[l.index(Set([j, k])), m] = 1-q
                elif i==j and not j==k-1:
                    A[l.index(Set([j, k])), m] = 0
                    A[l.index(Set([j+1, k])), m] = 1
                elif k-1==i and not k-1==j:
                    A[l.index(Set([j, i])), m] = q
                    A[l.index(Set([j, k])), m] = 1-q
                    A[l.index(Set([i, k])), m] = (1-q)*q*t
                elif i==k:
                    A[l.index(Set([j, k])), m] = 0
                    A[l.index(Set([j, k+1])), m] = 1
                elif i==j and j==k-1:
                    A[l.index(Set([j, k])), m] = -t*q*q
                else:
                    A[l.index(Set([j, k])), m] = 1
            return A
        else:
            i = -braid[0]-1
            for m in range(len(l)):
                j = min(l[m])
                k = max(l[m])
                if i==j-1:
                    A[l.index(Set([j-1, k])), m] = 1
                elif i==j and not j==k-1:
                    A[l.index(Set([j+1, k])), m] = q**(-1)
                    A[l.index(Set([j, k])), m] = 1-q**(-1)
                    A[l.index(Set([j, j+1])), m] = t**(-1)*q**(-1)-t**(-1)*q**(-2)
                elif k-1==i and not k-1==j:
                    A[l.index(Set([j, k-1])), m] = 1
                elif i==k:
                    A[l.index(Set([j, k+1])), m] = q**(-1)
                    A[l.index(Set([j, k])), m] = 1-q**(-1)
                    A[l.index(Set([k, k+1])), m] = -q**(-1)+q**(-2)
                elif i==j and j==k-1:
                    A[l.index(Set([j, k])), m] = -t**(-1)*q**(-2)
                else:
                    A[l.index(Set([j, k])), m] = 1
            return A
Exemplo n.º 5
0
    def alexander_polynomial(self, var='t', normalized=True):
        r"""
        Return the Alexander polynomial of the closure of the braid.

        INPUT:

        - ``var`` -- string (default: ``'t'``); the name of the
          variable in the entries of the matrix
        - ``normalized`` -- boolean (default: ``True``); whether to
          return the normalized Alexander polynomial

        OUTPUT:

        The Alexander polynomial of the braid closure of the braid.

        This is computed using the reduced Burau representation. The
        unnormalized Alexander polynomial is a Laurent polynomial,
        which is only well-defined up to multiplication by plus or
        minus times a power of `t`.

        We normalize the polynomial by dividing by the largest power
        of `t` and then if the resulting constant coefficient
        is negative, we multiply by `-1`.

        EXAMPLES:

        We first construct the trefoil::

            sage: B = BraidGroup(3)
            sage: b = B([1,2,1,2])
            sage: b.alexander_polynomial(normalized=False)
            1 - t + t^2
            sage: b.alexander_polynomial()
            t^-2 - t^-1 + 1

        Next we construct the figure 8 knot::

            sage: b = B([-1,2,-1,2])
            sage: b.alexander_polynomial(normalized=False)
            -t^-2 + 3*t^-1 - 1
            sage: b.alexander_polynomial()
            t^-2 - 3*t^-1 + 1

        Our last example is the Kinoshita-Terasaka knot::

            sage: B = BraidGroup(4)
            sage: b = B([1,1,1,3,3,2,-3,-1,-1,2,-1,-3,-2])
            sage: b.alexander_polynomial(normalized=False)
            -t^-1
            sage: b.alexander_polynomial()
            1

        REFERENCES:

        - :wikipedia:`Alexander_polynomial`
        """
        n = self.strands()
        p = (self.burau_matrix(reduced=True) - identity_matrix(n - 1)).det()
        K, t = LaurentPolynomialRing(IntegerRing(), var).objgen()
        if p == 0:
            return K.zero()
        qn = sum(t ** i for i in range(n))
        p //= qn
        if normalized:
            p *= t ** (-p.degree())
            if p.constant_coefficient() < 0:
                p = -p
        return p
Exemplo n.º 6
0
    def burau_matrix(self, var='t', reduced=False):
        """
        Return the Burau matrix of the braid.

        INPUT:

        - ``var`` -- string (default: ``'t'``); the name of the
          variable in the entries of the matrix
        - ``reduced`` -- boolean (default: ``False``); whether to
          return the reduced or unreduced Burau representation

        OUTPUT:

        The Burau matrix of the braid. It is a matrix whose entries
        are Laurent polynomials in the variable ``var``. If ``reduced``
        is ``True``, return the matrix for the reduced Burau representation
        instead.

        EXAMPLES::

            sage: B = BraidGroup(4)
            sage: B.inject_variables()
            Defining s0, s1, s2
            sage: b = s0*s1/s2/s1
            sage: b.burau_matrix()
            [       1 - t            0      t - t^2          t^2]
            [           1            0            0            0]
            [           0            0            1            0]
            [           0         t^-2 -t^-2 + t^-1    -t^-1 + 1]
            sage: s2.burau_matrix('x')
            [    1     0     0     0]
            [    0     1     0     0]
            [    0     0 1 - x     x]
            [    0     0     1     0]
            sage: s0.burau_matrix(reduced=True)
            [-t  0  0]
            [-t  1  0]
            [-t  0  1]

        REFERENCES:

        - :wikipedia:`Burau_representation`
        """
        R = LaurentPolynomialRing(IntegerRing(), var)
        t = R.gen()
        n = self.strands()
        if not reduced:
            M = identity_matrix(R, n)
            for i in self.Tietze():
                A = identity_matrix(R, n)
                if i > 0:
                    A[i-1, i-1] = 1-t
                    A[i, i] = 0
                    A[i, i-1] = 1
                    A[i-1, i] = t
                if i < 0:
                    A[-1-i, -1-i] = 0
                    A[-i, -i] = 1-t**(-1)
                    A[-1-i, -i] = 1
                    A[-i, -1-i] = t**(-1)
                M = M * A
        else:
            M = identity_matrix(R, n - 1)
            for j in self.Tietze():
                A = identity_matrix(R, n - 1)
                if j > 1:
                    i = j-1
                    A[i-1, i-1] = 1-t
                    A[i, i] = 0
                    A[i, i-1] = 1
                    A[i-1, i] = t
                if j < -1:
                    i = j+1
                    A[-1-i, -1-i] = 0
                    A[-i, -i] = 1-t**(-1)
                    A[-1-i, -i] = 1
                    A[-i, -1-i] = t**(-1)
                if j == 1:
                    for k in range(n - 1):
                        A[k,0] = -t
                if j == -1:
                    A[0,0] = -t**(-1)
                    for k in range(1, n - 1):
                        A[k,0] = -1
                M = M * A
        return M
Exemplo n.º 7
0
def MacMahonOmega(var,
                  expression,
                  denominator=None,
                  op=operator.ge,
                  Factorization_sort=False,
                  Factorization_simplify=True):
    r"""
    Return `\Omega_{\mathrm{op}}` of ``expression`` with respect to ``var``.

    To be more precise, calculate

    .. MATH::

        \Omega_{\mathrm{op}} \frac{n}{d_1 \dots d_n}

    for the numerator `n` and the factors `d_1`, ..., `d_n` of
    the denominator, all of which are Laurent polynomials in ``var``
    and return a (partial) factorization of the result.

    INPUT:

    - ``var`` -- a variable or a representation string of a variable

    - ``expression`` -- a
      :class:`~sage.structure.factorization.Factorization`
      of Laurent polynomials or, if ``denominator`` is specified,
      a Laurent polynomial interpreted as the numerator of the
      expression

    - ``denominator`` -- a Laurent polynomial or a
      :class:`~sage.structure.factorization.Factorization` (consisting
      of Laurent polynomial factors) or a tuple/list of factors (Laurent
      polynomials)

    - ``op`` -- (default: ``operator.ge``) an operator

      At the moment only ``operator.ge`` is implemented.

    - ``Factorization_sort`` (default: ``False``) and
      ``Factorization_simplify`` (default: ``True``) -- are passed on to
      :class:`sage.structure.factorization.Factorization` when creating
      the result

    OUTPUT:

    A (partial) :class:`~sage.structure.factorization.Factorization`
    of the result whose factors are Laurent polynomials

    .. NOTE::

        The numerator of the result may not be factored.

    REFERENCES:

    - [Mac1915]_

    - [APR2001]_

    EXAMPLES::

        sage: L.<mu, x, y, z, w> = LaurentPolynomialRing(ZZ)

        sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu])
        1 * (-x + 1)^-1 * (-x*y + 1)^-1

        sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu, 1 - z/mu])
        1 * (-x + 1)^-1 * (-x*y + 1)^-1 * (-x*z + 1)^-1
        sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y*mu, 1 - z/mu])
        (-x*y*z + 1) * (-x + 1)^-1 * (-y + 1)^-1 * (-x*z + 1)^-1 * (-y*z + 1)^-1
        sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu^2])
        1 * (-x + 1)^-1 * (-x^2*y + 1)^-1
        sage: MacMahonOmega(mu, 1, [1 - x*mu^2, 1 - y/mu])
        (x*y + 1) * (-x + 1)^-1 * (-x*y^2 + 1)^-1

        sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y*mu, 1 - z/mu^2])
        (-x^2*y*z - x*y^2*z + x*y*z + 1) *
        (-x + 1)^-1 * (-y + 1)^-1 * (-x^2*z + 1)^-1 * (-y^2*z + 1)^-1

        sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu^3])
        1 * (-x + 1)^-1 * (-x^3*y + 1)^-1
        sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu^4])
        1 * (-x + 1)^-1 * (-x^4*y + 1)^-1
        sage: MacMahonOmega(mu, 1, [1 - x*mu^3, 1 - y/mu])
        (x*y^2 + x*y + 1) * (-x + 1)^-1 * (-x*y^3 + 1)^-1
        sage: MacMahonOmega(mu, 1, [1 - x*mu^4, 1 - y/mu])
        (x*y^3 + x*y^2 + x*y + 1) * (-x + 1)^-1 * (-x*y^4 + 1)^-1

        sage: MacMahonOmega(mu, 1, [1 - x*mu^2, 1 - y/mu, 1 - z/mu])
        (x*y*z + x*y + x*z + 1) *
        (-x + 1)^-1 * (-x*y^2 + 1)^-1 * (-x*z^2 + 1)^-1
        sage: MacMahonOmega(mu, 1, [1 - x*mu^2, 1 - y*mu, 1 - z/mu])
        (-x*y*z^2 - x*y*z + x*z + 1) *
        (-x + 1)^-1 * (-y + 1)^-1 * (-x*z^2 + 1)^-1 * (-y*z + 1)^-1

        sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y*mu, 1 - z*mu, 1 - w/mu])
        (x*y*z*w^2 + x*y*z*w - x*y*w - x*z*w - y*z*w + 1) *
        (-x + 1)^-1 * (-y + 1)^-1 * (-z + 1)^-1 *
        (-x*w + 1)^-1 * (-y*w + 1)^-1 * (-z*w + 1)^-1
        sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y*mu, 1 - z/mu, 1 - w/mu])
        (x^2*y*z*w + x*y^2*z*w - x*y*z*w - x*y*z - x*y*w + 1) *
        (-x + 1)^-1 * (-y + 1)^-1 *
        (-x*z + 1)^-1 * (-x*w + 1)^-1 * (-y*z + 1)^-1 * (-y*w + 1)^-1

        sage: MacMahonOmega(mu, mu^-2, [1 - x*mu, 1 - y/mu])
        x^2 * (-x + 1)^-1 * (-x*y + 1)^-1
        sage: MacMahonOmega(mu, mu^-1, [1 - x*mu, 1 - y/mu])
        x * (-x + 1)^-1 * (-x*y + 1)^-1
        sage: MacMahonOmega(mu, mu, [1 - x*mu, 1 - y/mu])
        (-x*y + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1
        sage: MacMahonOmega(mu, mu^2, [1 - x*mu, 1 - y/mu])
        (-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1

    We demonstrate the different allowed input variants::

        sage: MacMahonOmega(mu,
        ....:     Factorization([(mu, 2), (1 - x*mu, -1), (1 - y/mu, -1)]))
        (-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1

        sage: MacMahonOmega(mu, mu^2,
        ....:     Factorization([(1 - x*mu, 1), (1 - y/mu, 1)]))
        (-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1

        sage: MacMahonOmega(mu, mu^2, [1 - x*mu, 1 - y/mu])
        (-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1

        sage: MacMahonOmega(mu, mu^2, (1 - x*mu)*(1 - y/mu))  # not tested because not fully implemented
        (-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1

        sage: MacMahonOmega(mu, mu^2 / ((1 - x*mu)*(1 - y/mu)))  # not tested because not fully implemented
        (-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1

    TESTS::

        sage: MacMahonOmega(mu, 1, [1 - x*mu])
        1 * (-x + 1)^-1
        sage: MacMahonOmega(mu, 1, [1 - x/mu])
        1
        sage: MacMahonOmega(mu, 0, [1 - x*mu])
        0
        sage: MacMahonOmega(mu, L(1), [])
        1
        sage: MacMahonOmega(mu, L(0), [])
        0
        sage: MacMahonOmega(mu, 2, [])
        2
        sage: MacMahonOmega(mu, 2*mu, [])
        2
        sage: MacMahonOmega(mu, 2/mu, [])
        0

    ::

        sage: MacMahonOmega(mu, Factorization([(1/mu, 1), (1 - x*mu, -1),
        ....:                                  (1 - y/mu, -2)], unit=2))
        2*x * (-x + 1)^-1 * (-x*y + 1)^-2
        sage: MacMahonOmega(mu, Factorization([(mu, -1), (1 - x*mu, -1),
        ....:                                  (1 - y/mu, -2)], unit=2))
        2*x * (-x + 1)^-1 * (-x*y + 1)^-2
        sage: MacMahonOmega(mu, Factorization([(mu, -1), (1 - x, -1)]))
        0
        sage: MacMahonOmega(mu, Factorization([(2, -1)]))
        1 * 2^-1

    ::

        sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - z, 1 - y/mu])
        1 * (-z + 1)^-1 * (-x + 1)^-1 * (-x*y + 1)^-1

    ::

        sage: MacMahonOmega(mu, 1, [1 - x*mu], op=operator.lt)
        Traceback (most recent call last):
        ...
        NotImplementedError: At the moment, only Omega_ge is implemented.

        sage: MacMahonOmega(mu, 1, Factorization([(1 - x*mu, -1)]))
        Traceback (most recent call last):
        ...
        ValueError: Factorization (-mu*x + 1)^-1 of the denominator
        contains negative exponents.

        sage: MacMahonOmega(2*mu, 1, [1 - x*mu])
        Traceback (most recent call last):
        ...
        ValueError: 2*mu is not a variable.

        sage: MacMahonOmega(mu, 1, Factorization([(0, 2)]))
        Traceback (most recent call last):
        ...
        ZeroDivisionError: Denominator contains a factor 0.

        sage: MacMahonOmega(mu, 1, [2 - x*mu])
        Traceback (most recent call last):
        ...
        NotImplementedError: Factor 2 - x*mu is not normalized.

        sage: MacMahonOmega(mu, 1, [1 - x*mu - mu^2])
        Traceback (most recent call last):
        ...
        NotImplementedError: Cannot handle factor 1 - x*mu - mu^2.

    ::

        sage: L.<mu, x, y, z, w> = LaurentPolynomialRing(QQ)
        sage: MacMahonOmega(mu, 1/mu,
        ....:     Factorization([(1 - x*mu, 1), (1 - y/mu, 2)], unit=2))
        1/2*x * (-x + 1)^-1 * (-x*y + 1)^-2
    """
    from sage.arith.misc import factor
    from sage.misc.misc_c import prod
    from sage.rings.integer_ring import ZZ
    from sage.rings.polynomial.laurent_polynomial_ring \
        import LaurentPolynomialRing, LaurentPolynomialRing_univariate
    from sage.structure.factorization import Factorization

    if op != operator.ge:
        raise NotImplementedError(
            'At the moment, only Omega_ge is implemented.')

    if denominator is None:
        if isinstance(expression, Factorization):
            numerator = expression.unit() * \
                        prod(f**e for f, e in expression if e > 0)
            denominator = tuple(f for f, e in expression if e < 0
                                for _ in range(-e))
        else:
            numerator = expression.numerator()
            denominator = expression.denominator()
    else:
        numerator = expression
    # at this point we have numerator/denominator

    if isinstance(denominator, (list, tuple)):
        factors_denominator = denominator
    else:
        if not isinstance(denominator, Factorization):
            denominator = factor(denominator)
        if not denominator.is_integral():
            raise ValueError(
                'Factorization {} of the denominator '
                'contains negative exponents.'.format(denominator))
        numerator *= ZZ(1) / denominator.unit()
        factors_denominator = tuple(factor for factor, exponent in denominator
                                    for _ in range(exponent))
    # at this point we have numerator/factors_denominator

    P = var.parent()
    if isinstance(P, LaurentPolynomialRing_univariate) and P.gen() == var:
        L = P
        L0 = L.base_ring()
    elif var in P.gens():
        var = repr(var)
        L0 = LaurentPolynomialRing(
            P.base_ring(), tuple(v for v in P.variable_names() if v != var))
        L = LaurentPolynomialRing(L0, var)
        var = L.gen()
    else:
        raise ValueError('{} is not a variable.'.format(var))

    other_factors = []
    to_numerator = []
    decoded_factors = []
    for factor in factors_denominator:
        factor = L(factor)
        D = factor.dict()
        if not D:
            raise ZeroDivisionError('Denominator contains a factor 0.')
        elif len(D) == 1:
            exponent, coefficient = next(iteritems(D))
            if exponent == 0:
                other_factors.append(L0(factor))
            else:
                to_numerator.append(factor)
        elif len(D) == 2:
            if D.get(0, 0) != 1:
                raise NotImplementedError(
                    'Factor {} is not normalized.'.format(factor))
            D.pop(0)
            exponent, coefficient = next(iteritems(D))
            decoded_factors.append((-coefficient, exponent))
        else:
            raise NotImplementedError(
                'Cannot handle factor {}.'.format(factor))
    numerator = L(numerator) / prod(to_numerator)

    result_numerator, result_factors_denominator = \
        _Omega_(numerator.dict(), decoded_factors)
    if result_numerator == 0:
        return Factorization([], unit=result_numerator)

    return Factorization([(result_numerator, 1)] + list(
        (f, -1) for f in other_factors) + list(
            (1 - f, -1) for f in result_factors_denominator),
                         sort=Factorization_sort,
                         simplify=Factorization_simplify)
Exemplo n.º 8
0
def Omega_ge(a, exponents):
    r"""
    Return `\Omega_{\ge}` of the expression specified by the input.

    To be more precise, calculate

    .. MATH::

        \Omega_{\ge} \frac{\mu^a}{
        (1 - z_0 \mu^{e_0}) \dots (1 - z_{n-1} \mu^{e_{n-1}})}

    and return its numerator and a factorization of its denominator.
    Note that `z_0`, ..., `z_{n-1}` only appear in the output, but not in the
    input.

    INPUT:

    - ``a`` -- an integer

    - ``exponents`` -- a tuple of integers

    OUTPUT:

    A pair representing a quotient as follows: Its first component is the
    numerator as a Laurent polynomial, its second component a factorization
    of the denominator as a tuple of Laurent polynomials, where each
    Laurent polynomial `z` represents a factor `1 - z`.

    The parents of these Laurent polynomials is always a
    Laurent polynomial ring in `z_0`, ..., `z_{n-1}` over `\ZZ`, where
    `n` is the length of ``exponents``.

    EXAMPLES::

        sage: from sage.rings.polynomial.omega import Omega_ge
        sage: Omega_ge(0, (1, -2))
        (1, (z0, z0^2*z1))
        sage: Omega_ge(0, (1, -3))
        (1, (z0, z0^3*z1))
        sage: Omega_ge(0, (1, -4))
        (1, (z0, z0^4*z1))

        sage: Omega_ge(0, (2, -1))
        (z0*z1 + 1, (z0, z0*z1^2))
        sage: Omega_ge(0, (3, -1))
        (z0*z1^2 + z0*z1 + 1, (z0, z0*z1^3))
        sage: Omega_ge(0, (4, -1))
        (z0*z1^3 + z0*z1^2 + z0*z1 + 1, (z0, z0*z1^4))

        sage: Omega_ge(0, (1, 1, -2))
        (-z0^2*z1*z2 - z0*z1^2*z2 + z0*z1*z2 + 1, (z0, z1, z0^2*z2, z1^2*z2))
        sage: Omega_ge(0, (2, -1, -1))
        (z0*z1*z2 + z0*z1 + z0*z2 + 1, (z0, z0*z1^2, z0*z2^2))
        sage: Omega_ge(0, (2, 1, -1))
        (-z0*z1*z2^2 - z0*z1*z2 + z0*z2 + 1, (z0, z1, z0*z2^2, z1*z2))

    ::

        sage: Omega_ge(0, (2, -2))
        (-z0*z1 + 1, (z0, z0*z1, z0*z1))
        sage: Omega_ge(0, (2, -3))
        (z0^2*z1 + 1, (z0, z0^3*z1^2))
        sage: Omega_ge(0, (3, 1, -3))
        (-z0^3*z1^3*z2^3 + 2*z0^2*z1^3*z2^2 - z0*z1^3*z2
         + z0^2*z2^2 - 2*z0*z2 + 1,
         (z0, z1, z0*z2, z0*z2, z0*z2, z1^3*z2))

    ::

        sage: Omega_ge(0, (3, 6, -1))
        (-z0*z1*z2^8 - z0*z1*z2^7 - z0*z1*z2^6 - z0*z1*z2^5 - z0*z1*z2^4 +
         z1*z2^5 - z0*z1*z2^3 + z1*z2^4 - z0*z1*z2^2 + z1*z2^3 -
         z0*z1*z2 + z0*z2^2 + z1*z2^2 + z0*z2 + z1*z2 + 1,
         (z0, z1, z0*z2^3, z1*z2^6))

    TESTS::

        sage: Omega_ge(0, (2, 2, 1, 1, 1, -1, -1))[0].number_of_terms()  # long time
        1695
        sage: Omega_ge(0, (2, 2, 1, 1, 1, 1, 1, -1, -1))[0].number_of_terms()  # not tested (too long, 1 min)
        27837

    ::

        sage: Omega_ge(1, (2,))
        (1, (z0,))
    """
    import logging
    logger = logging.getLogger(__name__)
    logger.info('Omega_ge: a=%s, exponents=%s', a, exponents)

    from sage.arith.all import lcm, srange
    from sage.rings.integer_ring import ZZ
    from sage.rings.polynomial.laurent_polynomial_ring import LaurentPolynomialRing
    from sage.rings.number_field.number_field import CyclotomicField

    if not exponents or any(e == 0 for e in exponents):
        raise NotImplementedError

    rou = sorted(set(abs(e) for e in exponents) - set([1]))
    ellcm = lcm(rou)
    B = CyclotomicField(ellcm, 'zeta')
    zeta = B.gen()
    z_names = tuple('z{}'.format(i) for i in range(len(exponents)))
    L = LaurentPolynomialRing(B, ('t', ) + z_names, len(z_names) + 1)
    t = L.gens()[0]
    Z = LaurentPolynomialRing(ZZ, z_names, len(z_names))
    powers = {i: L(zeta**(ellcm // i)) for i in rou}
    powers[2] = L(-1)
    powers[1] = L(1)
    exponents_and_values = tuple(
        (e, tuple(powers[abs(e)]**j * z for j in srange(abs(e))))
        for z, e in zip(L.gens()[1:], exponents))
    x = tuple(v for e, v in exponents_and_values if e > 0)
    y = tuple(v for e, v in exponents_and_values if e < 0)

    def subs_power(expression, var, exponent):
        r"""
        Substitute ``var^exponent`` by ``var`` in ``expression``.

        It is assumed that ``var`` only occurs with exponents
        divisible by ``exponent``.
        """
        p = tuple(var.dict().popitem()[0]).index(
            1)  # var is the p-th generator

        def subs_e(e):
            e = list(e)
            assert e[p] % exponent == 0
            e[p] = e[p] // exponent
            return tuple(e)

        parent = expression.parent()
        result = parent(
            {subs_e(e): c
             for e, c in iteritems(expression.dict())})
        return result

    def de_power(expression):
        expression = Z(expression)
        for e, var in zip(exponents, Z.gens()):
            if abs(e) == 1:
                continue
            expression = subs_power(expression, var, abs(e))
        return expression

    logger.debug('Omega_ge: preparing denominator')
    factors_denominator = tuple(
        de_power(1 - factor) for factor in _Omega_factors_denominator_(x, y))

    logger.debug('Omega_ge: preparing numerator')
    numerator = de_power(_Omega_numerator_(a, x, y, t))

    logger.info('Omega_ge: completed')
    return numerator, factors_denominator
Exemplo n.º 9
0
    def loop_representation(self):
        r"""
        Return the map `\pi` from ``self`` to `2 \times 2` matrices
        over `R[\lambda,\lambda^{-1}]`, where `F` is the fraction field
        of the base ring of ``self``.

        Let `AW` be the Askey-Wilson algebra over `R`, and let `F` be
        the fraction field of `R`. Let `M` be the space of `2 \times 2`
        matrices over `F[\lambda, \lambda^{-1}]`. Consider the following
        elements of `M`:

        .. MATH::

            \mathcal{A} = \begin{pmatrix}
                \lambda & 1 - \lambda^{-1} \\ 0 & \lambda^{-1}
            \end{pmatrix},
            \qquad
            \mathcal{B} = \begin{pmatrix}
                \lambda^{-1} & 0 \\ \lambda - 1 & \lambda
            \end{pmatrix},
            \qquad
            \mathcal{C} = \begin{pmatrix}
                1 & \lambda - 1 \\ 1 - \lambda^{-1} & \lambda + \lambda^{-1} - 1
            \end{pmatrix}.

        From Lemma 3.11 of [Terwilliger2011]_, we define a
        representation `\pi: AW \to M` by

        .. MATH::

            A \mapsto q \mathcal{A} + q^{-1} \mathcal{A}^{-1},
            \qquad
            B \mapsto q \mathcal{B} + q^{-1} \mathcal{B}^{-1},
            \qquad
            C \mapsto q \mathcal{C} + q^{-1} \mathcal{C}^{-1},

        .. MATH::

            \alpha, \beta, \gamma \mapsto \nu I,

        where `\nu = (q^2 + q^-2)(\lambda + \lambda^{-1})
        + (\lambda + \lambda^{-1})^2`.

        We call this representation the *loop representation* as
        it is a representation using the loop group
        `SL_2(F[\lambda,\lambda^{-1}])`.

        EXAMPLES::

            sage: AW = algebras.AskeyWilson(QQ)
            sage: q = AW.q()
            sage: pi = AW.loop_representation()
            sage: A,B,C,a,b,g = [pi(gen) for gen in AW.algebra_generators()]
            sage: A
            [                1/q*lambda^-1 + q*lambda ((-q^2 + 1)/q)*lambda^-1 + ((q^2 - 1)/q)]
            [                                       0                 q*lambda^-1 + 1/q*lambda]
            sage: B
            [             q*lambda^-1 + 1/q*lambda                                     0]
            [((-q^2 + 1)/q) + ((q^2 - 1)/q)*lambda              1/q*lambda^-1 + q*lambda]
            sage: C
            [1/q*lambda^-1 + ((q^2 - 1)/q) + 1/q*lambda      ((q^2 - 1)/q) + ((-q^2 + 1)/q)*lambda]
            [  ((q^2 - 1)/q)*lambda^-1 + ((-q^2 + 1)/q)    q*lambda^-1 + ((-q^2 + 1)/q) + q*lambda]
            sage: a
            [lambda^-2 + ((q^4 + 1)/q^2)*lambda^-1 + 2 + ((q^4 + 1)/q^2)*lambda + lambda^2                                                                             0]
            [                                                                            0 lambda^-2 + ((q^4 + 1)/q^2)*lambda^-1 + 2 + ((q^4 + 1)/q^2)*lambda + lambda^2]
            sage: a == b
            True
            sage: a == g
            True

            sage: AW.an_element()
            (q^-3+3+2*q+q^2)*a*b*g^3 + q*A*C^2*b + 3*q^2*B*a^2*g + A
            sage: x = pi(AW.an_element())
            sage: y = (q^-3+3+2*q+q^2)*a*b*g^3 + q*A*C^2*b + 3*q^2*B*a^2*g + A
            sage: x == y
            True

        We check the defining relations of the Askey-Wilson algebra::

            sage: A + (q*B*C - q^-1*C*B) / (q^2 - q^-2) == a / (q + q^-1)
            True
            sage: B + (q*C*A - q^-1*A*C) / (q^2 - q^-2) == b / (q + q^-1)
            True
            sage: C + (q*A*B - q^-1*B*A) / (q^2 - q^-2) == g / (q + q^-1)
            True

        We check Lemma 3.12 in [Terwilliger2011]_::

            sage: M = pi.codomain()
            sage: la = M.base_ring().gen()
            sage: p = M([[0,-1],[1,1]])
            sage: s = M([[0,1],[la,0]])
            sage: rho = AW.rho()
            sage: sigma = AW.sigma()
            sage: all(p*pi(gen)*~p == pi(rho(gen)) for gen in AW.algebra_generators())
            True
            sage: all(s*pi(gen)*~s == pi(sigma(gen)) for gen in AW.algebra_generators())
            True
        """
        from sage.matrix.matrix_space import MatrixSpace
        q = self._q
        base = LaurentPolynomialRing(self.base_ring().fraction_field(),
                                     'lambda')
        la = base.gen()
        inv = ~la
        M = MatrixSpace(base, 2)
        A = M([[la, 1 - inv], [0, inv]])
        Ai = M([[inv, inv - 1], [0, la]])
        B = M([[inv, 0], [la - 1, la]])
        Bi = M([[la, 0], [1 - la, inv]])
        C = M([[1, 1 - la], [inv - 1, la + inv - 1]])
        Ci = M([[la + inv - 1, la - 1], [1 - inv, 1]])
        mu = la + inv
        nu = (self._q**2 + self._q**-2) * mu + mu**2
        nuI = M(nu)
        category = Algebras(Rings().Commutative())
        return AlgebraMorphism(self, [
            q * A + q**-1 * Ai, q * B + q**-1 * Bi, q * C + q**-1 * Ci, nuI,
            nuI, nuI
        ],
                               codomain=M,
                               category=category)
Exemplo n.º 10
0
    def __init__(self, data, **kwargs):
        r"""
        See :class:`ClusterAlgebra` for full documentation.
        """
        # TODO: right now we use ClusterQuiver to parse input data. It looks like a good idea but we should make sure it is.
        # TODO: in base replace LaurentPolynomialRing with the group algebra of a tropical semifield once it is implemented

        # Temporary variables
        Q = ClusterQuiver(data)
        n = Q.n()
        B0 = Q.b_matrix()[:n, :]
        I = identity_matrix(n)
        if 'principal_coefficients' in kwargs and kwargs[
                'principal_coefficients']:
            M0 = I
        else:
            M0 = Q.b_matrix()[n:, :]
        m = M0.nrows()

        # Ambient space for F-polynomials
        # NOTE: for speed purposes we need to have QQ here instead of the more natural ZZ. The reason is that _mutated_F is faster if we do not cast the result to polynomials but then we get "rational" coefficients
        self._U = PolynomialRing(QQ, ['u%s' % i for i in xrange(n)])

        # Storage for computed data
        self._path_dict = dict([(v, []) for v in map(tuple, I.columns())])
        self._F_poly_dict = dict([(v, self._U(1)) for v in self._path_dict])

        # Determine the names of the initial cluster variables
        if 'cluster_variables_names' in kwargs:
            if len(kwargs['cluster_variables_names']) == n:
                variables = kwargs['cluster_variables_names']
                cluster_variables_prefix = 'dummy'  # this is just to avoid checking again if cluster_variables_prefix is defined. Make this better before going public
            else:
                raise ValueError(
                    "cluster_variables_names should be a list of %d valid variable names"
                    % n)
        else:
            try:
                cluster_variables_prefix = kwargs['cluster_variables_prefix']
            except:
                cluster_variables_prefix = 'x'
            variables = [
                cluster_variables_prefix + '%s' % i for i in xrange(n)
            ]
            # why not just put str(i) instead of '%s'%i?

        # Determine scalars
        try:
            scalars = kwargs['scalars']
        except:
            scalars = ZZ

        # Determine coefficients and setup self._base
        if m > 0:
            if 'coefficients_names' in kwargs:
                if len(kwargs['coefficients_names']) == m:
                    coefficients = kwargs['coefficients_names']
                else:
                    raise ValueError(
                        "coefficients_names should be a list of %d valid variable names"
                        % m)
            else:
                try:
                    coefficients_prefix = kwargs['coefficients_prefix']
                except:
                    coefficients_prefix = 'y'
                if coefficients_prefix == cluster_variables_prefix:
                    offset = n
                else:
                    offset = 0
                coefficients = [
                    coefficients_prefix + '%s' % i
                    for i in xrange(offset, m + offset)
                ]
            # TODO: (***) base should eventually become the group algebra of a tropical semifield
            base = LaurentPolynomialRing(scalars, coefficients)
        else:
            base = scalars
            # TODO: next line should be removed when (***) is implemented
            coefficients = []

        # setup Parent and ambient
        # TODO: (***) _ambient should eventually be replaced with LaurentPolynomialRing(base, variables)
        self._ambient = LaurentPolynomialRing(scalars,
                                              variables + coefficients)
        self._ambient_field = self._ambient.fraction_field()
        # TODO: understand why using Algebras() instead of Rings() makes A(1) complain of missing _lmul_
        Parent.__init__(self,
                        base=base,
                        category=Rings(scalars).Commutative().Subobjects(),
                        names=variables + coefficients)

        # Data to compute cluster variables using separation of additions
        # BUG WORKAROUND: if your sage installation does not have trac:`19538` merged uncomment the following line and comment the next
        self._y = dict([
            (self._U.gen(j),
             prod([self._ambient.gen(n + i)**M0[i, j] for i in xrange(m)]))
            for j in xrange(n)
        ])
        #self._y = dict([ (self._U.gen(j), prod([self._base.gen(i)**M0[i,j] for i in xrange(m)])) for j in xrange(n)])
        self._yhat = dict([
            (self._U.gen(j),
             prod([self._ambient.gen(i)**B0[i, j]
                   for i in xrange(n)]) * self._y[self._U.gen(j)])
            for j in xrange(n)
        ])

        # Have we principal coefficients?
        self._is_principal = (M0 == I)

        # Store initial data
        self._B0 = copy(B0)
        self._n = n
        self.reset_current_seed()

        # Internal data for exploring the exchange graph
        self.reset_exploring_iterator()

        # Internal data to store exchange relations
        # This is a dictionary indexed by a frozen set of two g-vectors (the g-vectors of the exchanged variables)
        # Exchange relations are, for the moment, a frozen set of precisely two entries (one for each term in the exchange relation's RHS).
        # Each of them contains two things
        # 1) a list of pairs (g-vector, exponent) one for each cluster variable appearing in the term
        # 2) the coefficient part of the term
        # TODO: possibly refactor this producing a class ExchangeRelation with some pretty printing feature
        self._exchange_relations = dict()
        if 'store_exchange_relations' in kwargs and kwargs[
                'store_exchange_relations']:
            self._store_exchange_relations = True
        else:
            self._store_exchange_relations = False

        # Add methods that are defined only for special cases
        if n == 2:
            self.greedy_element = MethodType(greedy_element, self,
                                             self.__class__)
            self.greedy_coefficient = MethodType(greedy_coefficient, self,
                                                 self.__class__)
            self.theta_basis_element = MethodType(theta_basis_element, self,
                                                  self.__class__)