Exemplo n.º 1
0
    def create_object(self, version, key, **extra_args):
        r"""
        Create a Gauss valuation from normalized parameters.

        TESTS::

            sage: v = QQ.valuation(2)
            sage: R.<x> = QQ[]
            sage: GaussValuation.create_object(0, (R, v))
            Gauss valuation induced by 2-adic valuation

        """
        domain, v = key
        from sage.rings.valuation.valuation_space import DiscretePseudoValuationSpace
        parent = DiscretePseudoValuationSpace(domain)
        return parent.__make_element_class__(GaussValuation_generic)(parent, v)
Exemplo n.º 2
0
    def create_object(self, version, key, **extra_args):
        r"""
        Create a Gauss valuation from normalized parameters.

        TESTS::

            sage: v = QQ.valuation(2)
            sage: R.<x> = QQ[]
            sage: GaussValuation.create_object(0, (R, v))
            Gauss valuation induced by 2-adic valuation

        """
        domain, v = key
        from sage.rings.valuation.valuation_space import DiscretePseudoValuationSpace
        parent = DiscretePseudoValuationSpace(domain)
        return parent.__make_element_class__(GaussValuation_generic)(parent, v)
Exemplo n.º 3
0
    def create_object(self, version, key):
        r"""
        Return the valuation described by ``key``.

        TESTS::

            sage: from henselization import *
            sage: K = QQ.henselization(5)
            sage: K.valuation() # indirect doctest
            5-adic valuation

        """
        domain, = key
        from sage.rings.valuation.valuation_space import DiscretePseudoValuationSpace
        parent = DiscretePseudoValuationSpace(domain)
        return parent.__make_element_class__(HenselizationValuation)(parent)
Exemplo n.º 4
0
    def create_object(self, version, key, **extra_args):
        r"""
        Create the valuation specified by ``key``.

        EXAMPLES::

            sage: K.<x> = FunctionField(QQ)
            sage: R.<x> = QQ[]
            sage: w = valuations.GaussValuation(R, QQ.valuation(2))
            sage: v = K.valuation(w); v # indirect doctest
            2-adic valuation

        """
        domain, valuation = key
        from sage.rings.valuation.valuation_space import DiscretePseudoValuationSpace
        parent = DiscretePseudoValuationSpace(domain)

        if isinstance(valuation, tuple) and len(valuation) == 3:
            valuation, to_valuation_domain, from_valuation_domain = valuation
            if domain is domain.base() and valuation.domain() is valuation.domain().base() and to_valuation_domain == domain.hom([~valuation.domain().gen()]) and from_valuation_domain == valuation.domain().hom([~domain.gen()]):
                # valuation on the rational function field after x |--> 1/x
                if valuation == valuation.domain().valuation(valuation.domain().gen()):
                    # the classical valuation at the place 1/x
                    return parent.__make_element_class__(InfiniteRationalFunctionFieldValuation)(parent)

                from sage.structure.dynamic_class import dynamic_class
                clazz = RationalFunctionFieldMappedValuation
                if valuation.is_discrete_valuation():
                    clazz = dynamic_class("RationalFunctionFieldMappedValuation_discrete", (clazz, DiscreteValuation))
                else:
                    clazz = dynamic_class("RationalFunctionFieldMappedValuation_infinite", (clazz, InfiniteDiscretePseudoValuation))
                return parent.__make_element_class__(clazz)(parent, valuation, to_valuation_domain, from_valuation_domain)
            return parent.__make_element_class__(FunctionFieldExtensionMappedValuation)(parent, valuation, to_valuation_domain, from_valuation_domain)

        if domain is valuation.domain():
            # we can not just return valuation in this case
            # as this would break uniqueness and pickling
            raise ValueError("valuation must not be a valuation on domain yet but %r is a valuation on %r"%(valuation, domain))

        if domain.base_field() is domain:
            # valuation is a base valuation on K[x] that induces a valuation on K(x)
            if valuation.restriction(domain.constant_base_field()).is_trivial() and valuation.is_discrete_valuation():
                # valuation corresponds to a finite place
                return parent.__make_element_class__(FiniteRationalFunctionFieldValuation)(parent, valuation)
            else:
                from sage.structure.dynamic_class import dynamic_class
                clazz = NonClassicalRationalFunctionFieldValuation
                if valuation.is_discrete_valuation():
                    clazz = dynamic_class("NonClassicalRationalFunctionFieldValuation_discrete", (clazz, DiscreteFunctionFieldValuation_base))
                else:
                    clazz = dynamic_class("NonClassicalRationalFunctionFieldValuation_negative_infinite", (clazz, NegativeInfiniteDiscretePseudoValuation))
                return parent.__make_element_class__(clazz)(parent, valuation)
        else:
            # valuation is a limit valuation that singles out an extension
            return parent.__make_element_class__(FunctionFieldFromLimitValuation)(parent, valuation, domain.polynomial(), extra_args['approximants'])

        raise NotImplementedError("valuation on %r from %r on %r"%(domain, valuation, valuation.domain()))
Exemplo n.º 5
0
    def create_object(self, version, key, **extra_args):
        r"""
        Create a Gauss valuation from normalized parameters.

        TESTS::

            sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
            sage: v = pAdicValuation(QQ, 2)
            sage: R.<x> = QQ[]
            sage: GaussValuation.create_object(0, (R, v))
            Gauss valuation induced by 2-adic valuation

        """
        domain, v = key
        from sage.rings.valuation.valuation_space import DiscretePseudoValuationSpace
        parent = DiscretePseudoValuationSpace(domain)
        return parent.__make_element_class__(GaussValuation_generic)(parent, v)
Exemplo n.º 6
0
    def create_object(self, version, key, **extra_args):
        r"""
        Create a `p`-adic valuation from ``key``.

        EXAMPLES::

            sage: ZZ.valuation(5) # indirect doctest
            5-adic valuation

        """
        from sage.rings.all import ZZ, QQ
        from sage.rings.padics.padic_generic import pAdicGeneric
        from sage.rings.valuation.valuation_space import DiscretePseudoValuationSpace
        from sage.rings.polynomial.polynomial_quotient_ring import is_PolynomialQuotientRing
        from sage.rings.number_field.number_field import is_NumberField
        R = key[0]
        parent = DiscretePseudoValuationSpace(R)
        if isinstance(R, pAdicGeneric):
            assert(len(key)==1)
            return parent.__make_element_class__(pAdicValuation_padic)(parent)
        elif R is ZZ or R is QQ:
            prime = key[1]
            assert(len(key)==2)
            return parent.__make_element_class__(pAdicValuation_int)(parent, prime)
        else:
            v = key[1]
            approximants = extra_args['approximants']
            parent = DiscretePseudoValuationSpace(R)
            K = R.fraction_field()
            if is_NumberField(K):
                G = K.relative_polynomial()
            elif is_PolynomialQuotientRing(R):
                G = R.modulus()
            else:
                raise NotImplementedError
            return parent.__make_element_class__(pAdicFromLimitValuation)(parent, v, G.change_ring(R.base_ring()), approximants)
Exemplo n.º 7
0
    def _extensions_to_quotient(self, ring, approximants=None):
        r"""
        Return the extensions of this valuation to an integral quotient over
        the domain of this valuation.

        EXAMPLES::

            sage: R.<x> = QQ[]
            sage: QQ.valuation(2)._extensions_to_quotient(R.quo(x^2 + x + 1))
            [2-adic valuation]

        """
        from sage.rings.valuation.valuation_space import DiscretePseudoValuationSpace
        parent = DiscretePseudoValuationSpace(ring)
        approximants = approximants or self.mac_lane_approximants(
            ring.modulus().change_ring(self.domain()),
            assume_squarefree=True,
            require_incomparability=True)
        return [
            pAdicValuation(ring, approximant, approximants)
            for approximant in approximants
        ]
Exemplo n.º 8
0
    def create_object(self, version, key, **extra_args):
        r"""
        Create a `p`-adic valuation from ``key``.

        EXAMPLES::

            sage: ZZ.valuation(5) # indirect doctest
            5-adic valuation

        """
        from sage.rings.integer_ring import ZZ
        from sage.rings.rational_field import QQ
        from sage.rings.padics.padic_generic import pAdicGeneric
        from sage.rings.valuation.valuation_space import DiscretePseudoValuationSpace
        from sage.rings.polynomial.polynomial_quotient_ring import is_PolynomialQuotientRing
        from sage.rings.number_field.number_field import is_NumberField
        R = key[0]
        parent = DiscretePseudoValuationSpace(R)
        if isinstance(R, pAdicGeneric):
            assert (len(key) == 1)
            return parent.__make_element_class__(pAdicValuation_padic)(parent)
        elif R is ZZ or R is QQ:
            prime = key[1]
            assert (len(key) == 2)
            return parent.__make_element_class__(pAdicValuation_int)(parent,
                                                                     prime)
        else:
            v = key[1]
            approximants = extra_args['approximants']
            parent = DiscretePseudoValuationSpace(R)
            K = R.fraction_field()
            if is_NumberField(K):
                G = K.relative_polynomial()
            elif is_PolynomialQuotientRing(R):
                G = R.modulus()
            else:
                raise NotImplementedError
            return parent.__make_element_class__(pAdicFromLimitValuation)(
                parent, v, G.change_ring(R.base_ring()), approximants)
Exemplo n.º 9
0
    def extensions(self, ring):
        r"""
        Return the extensions of this valuation to ``ring``.

        EXAMPLES::

            sage: v = ZZ.valuation(2)
            sage: v.extensions(GaussianIntegers())
            [2-adic valuation]

        TESTS::

            sage: R.<a> = QQ[]
            sage: L.<a> = QQ.extension(x^3 - 2)
            sage: R.<b> = L[]
            sage: M.<b> = L.extension(b^2 + 2*b + a)
            sage: M.valuation(2)
            2-adic valuation

        Check that we can extend to a field written as a quotient::

            sage: R.<x> = QQ[]
            sage: K.<a> = QQ.extension(x^2 + 1)
            sage: R.<y> = K[]
            sage: L.<b> = R.quo(x^2 + a)
            sage: QQ.valuation(2).extensions(L)
            [2-adic valuation]

        A case where there was at some point an internal error in the
        approximants code::

            sage: R.<x> = QQ[]
            sage: L.<a> = NumberField(x^4 + 2*x^3 + 2*x^2 + 8)
            sage: QQ.valuation(2).extensions(L)
            [[ 2-adic valuation, v(x + 2) = 3/2 ]-adic valuation,
             [ 2-adic valuation, v(x) = 1/2 ]-adic valuation]

        A case where the extension was incorrect at some point::

            sage: v = QQ.valuation(2)
            sage: L.<a> = NumberField(x^2 + 2)
            sage: M.<b> = L.extension(x^2 + 1)
            sage: w = v.extension(L).extension(M)
            sage: w(w.uniformizer())
            1/4

        A case where the extensions could not be separated at some point::

            sage: v = QQ.valuation(2)
            sage: R.<x> = QQ[]
            sage: F = x^48 + 120*x^45 + 56*x^42 + 108*x^36 + 32*x^33 + 40*x^30 + 48*x^27 + 80*x^24 + 112*x^21 + 96*x^18 + 96*x^15 + 24*x^12 + 96*x^9 + 16*x^6 + 96*x^3 + 68
            sage: L.<a> = QQ.extension(F)
            sage: v.extensions(L)
            [[ 2-adic valuation, v(x) = 1/24, v(x^24 + 4*x^18 + 10*x^12 + 12*x^6 + 8*x^3 + 6) = 29/8 ]-adic valuation,
             [ 2-adic valuation, v(x) = 1/24, v(x^24 + 4*x^18 + 2*x^12 + 12*x^6 + 8*x^3 + 6) = 29/8 ]-adic valuation]

        """
        if self.domain() is ring:
            return [self]
        domain_fraction_field = _fraction_field(self.domain())
        if domain_fraction_field is not self.domain():
            if domain_fraction_field.is_subring(ring):
                return pAdicValuation(domain_fraction_field,
                                      self).extensions(ring)
        if self.domain().is_subring(ring):
            from sage.rings.polynomial.polynomial_quotient_ring import is_PolynomialQuotientRing
            if is_PolynomialQuotientRing(ring):
                if is_PolynomialQuotientRing(self.domain()):
                    if self.domain().modulus() == ring.modulus():
                        base_extensions = self._base_valuation.extensions(
                            self._base_valuation.domain().change_ring(
                                self._base_valuation.domain().base_ring(
                                ).fraction_field()))
                        return [
                            pAdicValuation(ring, base._initial_approximation)
                            for base in base_extensions
                        ]
                if ring.base_ring() is self.domain():
                    from sage.categories.all import IntegralDomains
                    if ring in IntegralDomains():
                        return self._extensions_to_quotient(ring)
                elif self.domain().is_subring(ring.base_ring()):
                    return sum([
                        w.extensions(ring)
                        for w in self.extensions(ring.base_ring())
                    ], [])
            from sage.rings.number_field.number_field import is_NumberField
            if is_NumberField(ring.fraction_field()):
                if ring.base_ring().fraction_field() is self.domain(
                ).fraction_field():
                    from sage.rings.valuation.valuation_space import DiscretePseudoValuationSpace
                    parent = DiscretePseudoValuationSpace(ring)
                    approximants = self.mac_lane_approximants(
                        ring.fraction_field().relative_polynomial(
                        ).change_ring(self.domain()),
                        assume_squarefree=True,
                        require_incomparability=True)
                    return [
                        pAdicValuation(ring, approximant, approximants)
                        for approximant in approximants
                    ]
                if ring.base_ring() is not ring and self.domain().is_subring(
                        ring.base_ring()):
                    return sum([
                        w.extensions(ring)
                        for w in self.extensions(ring.base_ring())
                    ], [])
        return super(pAdicValuation_base, self).extensions(ring)
Exemplo n.º 10
0
    def create_key_and_extra_args(self, domain, prime):
        r"""
        Create a unique key which identifies the valuation given by ``prime``
        on ``domain``.

        TESTS:

        We specify a valuation on a function field by two different means and
        get the same object::

            sage: K.<x> = FunctionField(QQ)
            sage: v = K.valuation(x - 1) # indirect doctest

            sage: R.<x> = QQ[]
            sage: w = GaussValuation(R, valuations.TrivialValuation(QQ)).augmentation(x - 1, 1)
            sage: K.valuation(w) is v
            True

        The normalization is, however, not smart enough, to unwrap
        substitutions that turn out to be trivial::
        
            sage: w = GaussValuation(R, QQ.valuation(2))
            sage: w = K.valuation(w)
            sage: w is K.valuation((w, K.hom([~K.gen()]), K.hom([~K.gen()])))
            False

        """
        from sage.categories.function_fields import FunctionFields
        if domain not in FunctionFields():
            raise ValueError("Domain must be a function field.")

        if isinstance(prime, tuple):
            if len(prime) == 3:
                # prime is a triple of a valuation on another function field with
                # isomorphism information
                return self.create_key_and_extra_args_from_valuation_on_isomorphic_field(domain, prime[0], prime[1], prime[2])

        from sage.rings.valuation.valuation_space import DiscretePseudoValuationSpace
        if prime.parent() is DiscretePseudoValuationSpace(domain):
            # prime is already a valuation of the requested domain
            # if we returned (domain, prime), we would break caching
            # because this element has been created from a different key
            # Instead, we return the key that was used to create prime
            # so the caller gets back a correctly cached version of prime
            if not hasattr(prime, "_factory_data"):
               raise NotImplementedError("Valuations on function fields must be unique and come out of the FunctionFieldValuation factory but %r has been created by other means"%(prime,))
            return prime._factory_data[2], {}

        if prime in domain:
            # prime defines a place
            return self.create_key_and_extra_args_from_place(domain, prime)
        if prime.parent() is DiscretePseudoValuationSpace(domain._ring):
            # prime is a discrete (pseudo-)valuation on the polynomial ring
            # that the domain is constructed from
            return self.create_key_and_extra_args_from_valuation(domain, prime)
        if domain.base_field() is not domain:
            # prime might define a valuation on a subring of domain and have a
            # unique extension to domain
            base_valuation = domain.base_field().valuation(prime)
            return self.create_key_and_extra_args_from_valuation(domain, base_valuation)
        from sage.rings.ideal import is_Ideal
        if is_Ideal(prime):
            raise NotImplementedError("a place can not be given by an ideal yet")

        raise NotImplementedError("argument must be a place or a pseudo-valuation on a supported subring but %r does not satisfy this for the domain %r"%(prime, domain))