Exemplo n.º 1
0
    def _coerce_map_from_(self, R):
        r"""
        Return a coerce map from ``R`` to this field.

        EXAMPLES::

            sage: R.<t> = GF(5)[]
            sage: K = R.fraction_field()
            sage: L = K.function_field()
            sage: f = K.coerce_map_from(L); f # indirect doctest
            Isomorphism:
              From: Rational function field in t over Finite Field of size 5
              To:   Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
            sage: f(~L.gen())
            1/t

        """
        from sage.rings.function_field.function_field import RationalFunctionField
        if isinstance(R, RationalFunctionField) and self.variable_name(
        ) == R.variable_name() and self.base_ring() is R.constant_base_field():
            from sage.categories.all import Hom
            parent = Hom(R, self)
            from sage.rings.function_field.maps import FunctionFieldToFractionField
            return parent.__make_element_class__(FunctionFieldToFractionField)(
                parent)

        return super(FractionField_1poly_field, self)._coerce_map_from_(R)
Exemplo n.º 2
0
    def section(self):
        r"""
        Return a section of this map.

        EXAMPLES::

            sage: R.<x> = QQ[]
            sage: R.fraction_field().coerce_map_from(R).section()
            Section map:
              From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
              To:   Univariate Polynomial Ring in x over Rational Field

        """
        from sage.categories.sets_with_partial_maps import SetsWithPartialMaps
        from sage.all import Hom
        parent = Hom(self.codomain(), self.domain(), SetsWithPartialMaps())
        return parent.__make_element_class__(FractionFieldEmbeddingSection)(self)
Exemplo n.º 3
0
    def _coerce_map_from_(self, S):
        """
        Return ``True`` if elements of ``S`` can be coerced into this
        fraction field.

        This fraction field has coercions from:

        - itself
        - any fraction field where the base ring coerces to the base
          ring of this fraction field
        - any ring that coerces to the base ring of this fraction field

        EXAMPLES::

            sage: F = QQ['x,y'].fraction_field()
            sage: F.has_coerce_map_from(F) # indirect doctest
            True

        ::

            sage: F.has_coerce_map_from(ZZ['x,y'].fraction_field())
            True

        ::

            sage: F.has_coerce_map_from(ZZ['x,y,z'].fraction_field())
            False

        ::

            sage: F.has_coerce_map_from(ZZ)
            True

        Test coercions::

            sage: F.coerce(1)
            1
            sage: F.coerce(int(1))
            1
            sage: F.coerce(1/2)
            1/2

        ::

            sage: K = ZZ['x,y'].fraction_field()
            sage: x,y = K.gens()
            sage: F.coerce(F.gen())
            x
            sage: F.coerce(x)
            x
            sage: F.coerce(x/y)
            x/y
            sage: L = ZZ['x'].fraction_field()
            sage: K.coerce(L.gen())
            x

        We demonstrate that :trac:`7958` is resolved in the case of
        number fields::

            sage: _.<x> = ZZ[]
            sage: K.<a> = NumberField(x^5-3*x^4+2424*x^3+2*x-232)
            sage: R = K.ring_of_integers()
            sage: S.<y> = R[]
            sage: F = FractionField(S)
            sage: F(1/a)
            (a^4 - 3*a^3 + 2424*a^2 + 2)/232

        Some corner cases have been known to fail in the past (:trac:`5917`)::

            sage: F1 = FractionField( QQ['a'] )
            sage: R12 = F1['x','y']
            sage: R12('a')
            a
            sage: F1(R12(F1('a')))
            a

            sage: F2 = FractionField( QQ['a','b'] )
            sage: R22 = F2['x','y']
            sage: R22('a')
            a
            sage: F2(R22(F2('a')))
            a

        Coercion from Laurent polynomials now works (:trac:`15345`)::

            sage: R = LaurentPolynomialRing(ZZ, 'x')
            sage: T = PolynomialRing(ZZ, 'x')
            sage: R.gen() + FractionField(T).gen()
            2*x
            sage: 1/(R.gen() + 1)
            1/(x + 1)

            sage: R = LaurentPolynomialRing(ZZ, 'x,y')
            sage: FF = FractionField(PolynomialRing(ZZ, 'x,y'))
            sage: prod(R.gens()) + prod(FF.gens())
            2*x*y
            sage: 1/(R.gen(0) + R.gen(1))
            1/(x + y)

        Coercion from a localization::

            sage: R.<x> = ZZ[]
            sage: L = Localization(R, (x**2 + 1,7))
            sage: F = L.fraction_field()
            sage: f = F.coerce_map_from(L); f
            Coercion map:
              From: Univariate Polynomial Ring in x over Integer Ring localized at (7, x^2 + 1)
              To:   Fraction Field of Univariate Polynomial Ring in x over Integer Ring
            sage: f(L(1/7)) == 1/7
            True
        """
        from sage.rings.rational_field import QQ
        from sage.rings.number_field.number_field_base import NumberField
        from sage.rings.polynomial.laurent_polynomial_ring import \
            LaurentPolynomialRing_generic

        if S is self._R:
            parent = self._R.Hom(self)
            return parent.__make_element_class__(FractionFieldEmbedding)(
                self._R, self, category=parent.homset_category())

        def wrapper(x):
            return self._element_class(self, x.numerator(), x.denominator())

        # The case ``S`` being `\QQ` requires special handling since `\QQ` is
        # not implemented as a ``FractionField_generic``.
        if S is QQ and self._R.has_coerce_map_from(ZZ):
            return CallableConvertMap(S,
                                      self,
                                      wrapper,
                                      parent_as_first_arg=False)

        # special treatment for localizations
        from sage.rings.localization import Localization
        if isinstance(S, Localization):
            parent = S.Hom(self)
            return parent.__make_element_class__(FractionFieldEmbedding)(
                S, self, category=parent.homset_category())

        # Number fields also need to be handled separately.
        if isinstance(S, NumberField):
            return CallableConvertMap(
                S,
                self,
                self._number_field_to_frac_of_ring_of_integers,
                parent_as_first_arg=False)

        # special treatment for LaurentPolynomialRings
        if isinstance(S, LaurentPolynomialRing_generic):

            def converter(x, y=None):
                if y is None:
                    return self._element_class(self, *x._fraction_pair())
                xnum, xden = x._fraction_pair()
                ynum, yden = y._fraction_pair()
                return self._element_class(self, xnum * yden, xden * ynum)

            return CallableConvertMap(S,
                                      self,
                                      converter,
                                      parent_as_first_arg=False)

        if (isinstance(S, FractionField_generic)
                and self._R.has_coerce_map_from(S.ring())):
            return CallableConvertMap(S,
                                      self,
                                      wrapper,
                                      parent_as_first_arg=False)

        if self._R.has_coerce_map_from(S):
            return CallableConvertMap(S,
                                      self,
                                      self._element_class,
                                      parent_as_first_arg=True)

        return None