Exemplo n.º 1
0
    def create_key_and_extra_args(self,
                                  order,
                                  name=None,
                                  modulus=None,
                                  names=None,
                                  impl=None,
                                  proof=None,
                                  **kwds):
        """
        EXAMPLES::
        
            sage: GF.create_key_and_extra_args(9, 'a')
            ((9, ('a',), 'conway', None, '{}', 3, 2, True), {})
            sage: GF.create_key_and_extra_args(9, 'a', foo='value')
            ((9, ('a',), 'conway', None, "{'foo': 'value'}", 3, 2, True), {'foo': 'value'})
        """
        from sage.structure.proof.all import WithProof, arithmetic
        if proof is None: proof = arithmetic()
        with WithProof('arithmetic', proof):
            order = int(order)
            if order <= 1:
                raise ValueError("the order of a finite field must be > 1.")

            if arith.is_prime(order):
                name = None
                modulus = None
                p = integer.Integer(order)
                n = integer.Integer(1)
            elif arith.is_prime_power(order):
                if not names is None: name = names
                name = normalize_names(1, name)

                p, n = arith.factor(order)[0]

                if modulus is None or modulus == "default":
                    if exists_conway_polynomial(p, n):
                        modulus = "conway"
                    else:
                        if p == 2:
                            modulus = "minimal_weight"
                        else:
                            modulus = "random"
                elif modulus == "random":
                    modulus += str(random.randint(0, 1 << 128))

                if isinstance(modulus, (list, tuple)):
                    modulus = FiniteField(p)['x'](modulus)
                # some classes use 'random' as the modulus to
                # generate a random modulus, but we don't want
                # to cache it
                elif sage.rings.polynomial.polynomial_element.is_Polynomial(
                        modulus):
                    modulus = modulus.change_variable_name('x')
                elif not isinstance(modulus, str):
                    raise ValueError("Modulus parameter not understood.")
            else:  # Neither a prime, nor a prime power
                raise ValueError(
                    "the order of a finite field must be a prime power.")

            return (order, name, modulus, impl, str(kwds), p, n, proof), kwds
Exemplo n.º 2
0
    def create_key_and_extra_args(self,
                                  order,
                                  name=None,
                                  modulus=None,
                                  names=None,
                                  impl=None,
                                  proof=None,
                                  **kwds):
        """
        EXAMPLES::

            sage: GF.create_key_and_extra_args(9, 'a')
            ((9, ('a',), x^2 + 2*x + 2, None, '{}', 3, 2, True), {})
            sage: GF.create_key_and_extra_args(9, 'a', foo='value')
            ((9, ('a',), x^2 + 2*x + 2, None, "{'foo': 'value'}", 3, 2, True), {'foo': 'value'})
        """
        from sage.structure.proof.all import WithProof, arithmetic
        if proof is None: proof = arithmetic()
        with WithProof('arithmetic', proof):
            order = int(order)
            if order <= 1:
                raise ValueError("the order of a finite field must be > 1.")

            if arith.is_prime(order):
                name = None
                modulus = None
                p = integer.Integer(order)
                n = integer.Integer(1)
            elif arith.is_prime_power(order):
                if not names is None: name = names
                name = normalize_names(1, name)

                p, n = arith.factor(order)[0]

                if modulus is None or isinstance(modulus, str):
                    # A string specifies an algorithm to find a suitable modulus.
                    if modulus == "default":  # for backward compatibility
                        modulus = None
                    modulus = GF(p)['x'].irreducible_element(n,
                                                             algorithm=modulus)
                elif isinstance(modulus, (list, tuple)):
                    modulus = GF(p)['x'](modulus)
                elif sage.rings.polynomial.polynomial_element.is_Polynomial(
                        modulus):
                    modulus = modulus.change_variable_name('x')
                else:
                    raise TypeError("wrong type for modulus parameter")
            else:
                raise ValueError(
                    "the order of a finite field must be a prime power.")

            return (order, name, modulus, impl, str(kwds), p, n, proof), kwds
Exemplo n.º 3
0
    def other_keys(self, key, K):
        """
        EXAMPLES::

            sage: key, extra = GF.create_key_and_extra_args(9, 'a'); key
            (9, ('a',), x^2 + 2*x + 2, None, '{}', 3, 2, True)
            sage: K = GF.create_object(0, key); K
            Finite Field in a of size 3^2
            sage: GF.other_keys(key, K)
            [(9, ('a',), x^2 + 2*x + 2, None, '{}', 3, 2, True),
             (9, ('a',), x^2 + 2*x + 2, 'givaro', '{}', 3, 2, True)]
        """
        if len(key) == 5:  # backward compat
            order, name, modulus, impl, _ = key
            p, n = arith.factor(order)[0]
            proof = True
        else:
            order, name, modulus, impl, _, p, n, proof = key

        from sage.structure.proof.all import WithProof
        with WithProof('arithmetic', proof):
            if K.degree() > 1:
                modulus = K.modulus().change_variable_name('x')
            new_keys = [(order, name, modulus, impl, _, p, n, proof)]
            from finite_field_prime_modn import FiniteField_prime_modn
            if isinstance(K, FiniteField_prime_modn):
                impl = 'modn'
            elif isinstance(K, FiniteField_givaro):
                impl = 'givaro'
            else:
                from finite_field_ntl_gf2e import FiniteField_ntl_gf2e
                from finite_field_ext_pari import FiniteField_ext_pari
                from finite_field_pari_ffelt import FiniteField_pari_ffelt
                if isinstance(K, FiniteField_ntl_gf2e):
                    impl = 'ntl'
                elif isinstance(K, FiniteField_ext_pari):
                    impl = 'pari_mod'
                elif isinstance(K, FiniteField_pari_ffelt):
                    impl = 'pari_ffelt'
            new_keys.append((order, name, modulus, impl, _, p, n, proof))
            return new_keys
Exemplo n.º 4
0
    def create_object(self, version, key, **kwds):
        """
        EXAMPLES::

            sage: K = GF(19) # indirect doctest
            sage: TestSuite(K).run()

        We try to create finite fields with various implementations::

            sage: k = GF(2, impl='modn')
            sage: k = GF(2, impl='givaro')
            sage: k = GF(2, impl='ntl')
            sage: k = GF(2, impl='pari')
            Traceback (most recent call last):
            ...
            ValueError: the degree must be at least 2
            sage: k = GF(2, impl='supercalifragilisticexpialidocious')
            Traceback (most recent call last):
            ...
            ValueError: no such finite field implementation: 'supercalifragilisticexpialidocious'
            sage: k.<a> = GF(2^15, impl='modn')
            Traceback (most recent call last):
            ...
            ValueError: the 'modn' implementation requires a prime order
            sage: k.<a> = GF(2^15, impl='givaro')
            sage: k.<a> = GF(2^15, impl='ntl')
            sage: k.<a> = GF(2^15, impl='pari')
            sage: k.<a> = GF(3^60, impl='modn')
            Traceback (most recent call last):
            ...
            ValueError: the 'modn' implementation requires a prime order
            sage: k.<a> = GF(3^60, impl='givaro')
            Traceback (most recent call last):
            ...
            ValueError: q must be < 2^16
            sage: k.<a> = GF(3^60, impl='ntl')
            Traceback (most recent call last):
            ...
            ValueError: q must be a 2-power
            sage: k.<a> = GF(3^60, impl='pari')
        """
        # IMPORTANT!  If you add a new class to the list of classes
        # that get cached by this factor object, then you *must* add
        # the following method to that class in order to fully support
        # pickling:
        #
        #     def __reduce__(self):   # and include good doctests, please!
        #         return self._factory_data[0].reduce_data(self)
        #
        # This is not in the base class for finite fields, since some finite
        # fields need not be created using this factory object, e.g., residue
        # class fields.

        if len(key) == 5:
            # for backward compatibility of pickles (see trac 10975).
            order, name, modulus, impl, _ = key
            p, n = Integer(order).factor()[0]
            proof = True
            prefix = kwds.get('prefix', None)
            # We can set the defaults here to be those for givaro
            #   as they are otherwise ignored
            repr = 'poly'
            elem_cache = (order < 500)
        elif len(key) == 8:
            # For backward compatibility of pickles (see trac #21433)
            order, name, modulus, impl, _, p, n, proof = key
            prefix = kwds.get('prefix', None)
            # We can set the defaults here to be those for givaro
            #   as they are otherwise ignored
            repr = kwds.get('repr', 'poly')
            elem_cache = kwds.get('elem_cache', (order < 500))
        else:
            order, name, modulus, impl, p, n, proof, prefix, repr, elem_cache = key

        if impl == 'modn':
            if n != 1:
                raise ValueError(
                    "the 'modn' implementation requires a prime order")
            from .finite_field_prime_modn import FiniteField_prime_modn
            # Using a check option here is probably a worthwhile
            # compromise since this constructor is simple and used a
            # huge amount.
            K = FiniteField_prime_modn(order, check=False, modulus=modulus)
        else:
            # We have to do this with block so that the finite field
            # constructors below will use the proof flag that was
            # passed in when checking for primality, factoring, etc.
            # Otherwise, we would have to complicate all of their
            # constructors with check options.
            from sage.structure.proof.all import WithProof
            with WithProof('arithmetic', proof):
                if impl == 'givaro':
                    K = FiniteField_givaro(order, name, modulus, repr,
                                           elem_cache)
                elif impl == 'ntl':
                    from .finite_field_ntl_gf2e import FiniteField_ntl_gf2e
                    K = FiniteField_ntl_gf2e(order, name, modulus)
                elif impl == 'pari_ffelt' or impl == 'pari':
                    from .finite_field_pari_ffelt import FiniteField_pari_ffelt
                    K = FiniteField_pari_ffelt(p, modulus, name)
                else:
                    raise ValueError(
                        "no such finite field implementation: %r" % impl)

            # Temporary; see create_key_and_extra_args() above.
            if prefix is not None:
                K._prefix = prefix

        return K
Exemplo n.º 5
0
    def create_key_and_extra_args(self,
                                  order,
                                  name=None,
                                  modulus=None,
                                  names=None,
                                  impl=None,
                                  proof=None,
                                  check_irreducible=True,
                                  prefix=None,
                                  repr=None,
                                  elem_cache=None,
                                  **kwds):
        """
        EXAMPLES::

            sage: GF.create_key_and_extra_args(9, 'a')
            ((9, ('a',), x^2 + 2*x + 2, 'givaro', 3, 2, True, None, 'poly', True), {})

        We do not take invalid keyword arguments and raise a value error
        to better ensure uniqueness::

            sage: GF.create_key_and_extra_args(9, 'a', foo='value')
            Traceback (most recent call last):
            ...
            TypeError: create_key_and_extra_args() got an unexpected keyword argument 'foo'

        Moreover, ``repr`` and ``elem_cache`` are ignored when not
        using givaro::

            sage: GF.create_key_and_extra_args(16, 'a', impl='ntl', repr='poly')
            ((16, ('a',), x^4 + x + 1, 'ntl', 2, 4, True, None, None, None), {})
            sage: GF.create_key_and_extra_args(16, 'a', impl='ntl', elem_cache=False)
            ((16, ('a',), x^4 + x + 1, 'ntl', 2, 4, True, None, None, None), {})
            sage: GF(16, impl='ntl') is GF(16, impl='ntl', repr='foo')
            True

        We handle extra arguments for the givaro finite field and
        create unique objects for their defaults::

            sage: GF(25, impl='givaro') is GF(25, impl='givaro', repr='poly')
            True
            sage: GF(25, impl='givaro') is GF(25, impl='givaro', elem_cache=True)
            True
            sage: GF(625, impl='givaro') is GF(625, impl='givaro', elem_cache=False)
            True

        We explicitly take ``structure``, ``implementation`` and ``prec`` attributes
        for compatibility with :class:`~sage.categories.pushout.AlgebraicExtensionFunctor`
        but we ignore them as they are not used, see :trac:`21433`::

            sage: GF.create_key_and_extra_args(9, 'a', structure=None)
            ((9, ('a',), x^2 + 2*x + 2, 'givaro', 3, 2, True, None, 'poly', True), {})
        """
        import sage.arith.all
        from sage.structure.proof.all import WithProof, arithmetic
        if proof is None:
            proof = arithmetic()
        for key, val in kwds.items():
            if key not in ['structure', 'implementation', 'prec', 'embedding']:
                raise TypeError(
                    "create_key_and_extra_args() got an unexpected keyword argument '%s'"
                    % key)
            if not (val is None
                    or isinstance(val, list) and all(c is None for c in val)):
                raise NotImplementedError(
                    "ring extension with prescribed %s is not implemented" %
                    key)
        with WithProof('arithmetic', proof):
            order = Integer(order)
            if order <= 1:
                raise ValueError(
                    "the order of a finite field must be at least 2")

            if order.is_prime():
                p = order
                n = Integer(1)
                if impl is None:
                    impl = 'modn'
                name = ('x', )  # Ignore name
                # Every polynomial of degree 1 is irreducible
                check_irreducible = False
            elif order.is_prime_power():
                if names is not None:
                    name = names
                if name is not None:
                    name = normalize_names(1, name)

                p, n = order.factor()[0]
                if name is None:
                    if prefix is None:
                        prefix = 'z'
                    name = prefix + str(n)
                    if modulus is not None:
                        raise ValueError(
                            "no modulus may be specified if variable name not given"
                        )
                    # Fpbar will have a strong reference, since algebraic_closure caches its results,
                    # and the coefficients of modulus lie in GF(p)
                    Fpbar = GF(p).algebraic_closure(prefix)
                    # This will give a Conway polynomial if p,n is small enough to be in the database
                    # and a pseudo-Conway polynomial if it's not.
                    modulus = Fpbar._get_polynomial(n)
                    check_irreducible = False

                if impl is None:
                    if order < zech_log_bound:
                        impl = 'givaro'
                    elif p == 2:
                        impl = 'ntl'
                    else:
                        impl = 'pari_ffelt'
            else:
                raise ValueError(
                    "the order of a finite field must be a prime power")

            # Determine modulus.
            # For the 'modn' implementation, we use the following
            # optimization which we also need to avoid an infinite loop:
            # a modulus of None is a shorthand for x-1.
            if modulus is not None or impl != 'modn':
                R = PolynomialRing(FiniteField(p), 'x')
                if modulus is None:
                    modulus = R.irreducible_element(n)
                if isinstance(modulus, str):
                    # A string specifies an algorithm to find a suitable modulus.
                    modulus = R.irreducible_element(n, algorithm=modulus)
                else:
                    if sage.rings.polynomial.polynomial_element.is_Polynomial(
                            modulus):
                        modulus = modulus.change_variable_name('x')
                    modulus = R(modulus).monic()

                    if modulus.degree() != n:
                        raise ValueError(
                            "the degree of the modulus does not equal the degree of the field"
                        )
                    if check_irreducible and not modulus.is_irreducible():
                        raise ValueError(
                            "finite field modulus must be irreducible but it is not"
                        )
                # If modulus is x - 1 for impl="modn", set it to None
                if impl == 'modn' and modulus[0] == -1:
                    modulus = None

            # Check extra arguments for givaro and setup their defaults
            # TODO: ntl takes a repr, but ignores it
            if impl == 'givaro':
                if repr is None:
                    repr = 'poly'
                if elem_cache is None:
                    elem_cache = (order < 500)
            else:
                # This has the effect of ignoring these keywords
                repr = None
                elem_cache = None

            return (order, name, modulus, impl, p, n, proof, prefix, repr,
                    elem_cache), {}
Exemplo n.º 6
0
    def create_object(self,
                      version,
                      key,
                      check_irreducible=True,
                      elem_cache=None,
                      names=None,
                      **kwds):
        """
        EXAMPLES::
        
            sage: K = GF(19)
            sage: TestSuite(K).run()
        """
        # IMPORTANT!  If you add a new class to the list of classes
        # that get cached by this factor object, then you *must* add
        # the following method to that class in order to fully support
        # pickling:
        #
        #     def __reduce__(self):   # and include good doctests, please!
        #         return self._factory_data[0].reduce_data(self)
        #
        # This is not in the base class for finite fields, since some finite
        # fields need not be created using this factory object, e.g., residue
        # class fields.

        if len(key) == 5:
            # for backward compatibility of pickles (see trac 10975).
            order, name, modulus, impl, _ = key
            p, n = arith.factor(order)[0]
            proof = True
        else:
            order, name, modulus, impl, _, p, n, proof = key

        if isinstance(modulus, str) and modulus.startswith("random"):
            modulus = "random"

        if elem_cache is None:
            elem_cache = order < 500

        if n == 1 and (impl is None or impl == 'modn'):
            from finite_field_prime_modn import FiniteField_prime_modn
            # Using a check option here is probably a worthwhile
            # compromise since this constructor is simple and used a
            # huge amount.
            K = FiniteField_prime_modn(order, check=False, **kwds)
        else:
            # We have to do this with block so that the finite field
            # constructors below will use the proof flag that was
            # passed in when checking for primality, factoring, etc.
            # Otherwise, we would have to complicate all of their
            # constructors with check options (like above).
            from sage.structure.proof.all import WithProof
            with WithProof('arithmetic', proof):
                if check_irreducible and polynomial_element.is_Polynomial(
                        modulus):
                    if modulus.parent().base_ring().characteristic() == 0:
                        modulus = modulus.change_ring(FiniteField(p))
                    if not modulus.is_irreducible():
                        raise ValueError(
                            "finite field modulus must be irreducible but it is not."
                        )
                    if modulus.degree() != n:
                        raise ValueError(
                            "The degree of the modulus does not correspond to the cardinality of the field."
                        )
                if name is None:
                    raise TypeError("you must specify the generator name.")
                if order < zech_log_bound:
                    # DO *NOT* use for prime subfield, since that would lead to
                    # a circular reference in the call to ParentWithGens in the
                    # __init__ method.
                    K = FiniteField_givaro(order,
                                           name,
                                           modulus,
                                           cache=elem_cache,
                                           **kwds)
                else:
                    if order % 2 == 0 and (impl is None or impl == 'ntl'):
                        from element_ntl_gf2e import FiniteField_ntl_gf2e
                        K = FiniteField_ntl_gf2e(order, name, modulus, **kwds)
                    else:
                        from finite_field_ext_pari import FiniteField_ext_pari
                        K = FiniteField_ext_pari(order, name, modulus, **kwds)

        return K
Exemplo n.º 7
0
    def create_key_and_extra_args(self,
                                  order,
                                  name=None,
                                  modulus=None,
                                  names=None,
                                  impl=None,
                                  proof=None,
                                  **kwds):
        """
        EXAMPLES::

            sage: GF.create_key_and_extra_args(9, 'a')
            ((9, ('a',), x^2 + 2*x + 2, None, '{}', 3, 2, True), {})
            sage: GF.create_key_and_extra_args(9, 'a', foo='value')
            ((9, ('a',), x^2 + 2*x + 2, None, "{'foo': 'value'}", 3, 2, True), {'foo': 'value'})
        """
        from sage.structure.proof.all import WithProof, arithmetic
        if proof is None: proof = arithmetic()
        with WithProof('arithmetic', proof):
            order = int(order)
            if order <= 1:
                raise ValueError("the order of a finite field must be > 1.")

            if arith.is_prime(order):
                name = None
                modulus = None
                p = integer.Integer(order)
                n = integer.Integer(1)
            elif arith.is_prime_power(order):
                if not names is None: name = names
                name = normalize_names(1, name)

                p, n = arith.factor(order)[0]

                # The following is a temporary solution that allows us
                # to construct compatible systems of finite fields
                # until algebraic closures of finite fields are
                # implemented in Sage.  It requires the user to
                # specify two parameters:
                #
                # - `conway` -- boolean; if True, this field is
                #   constructed to fit in a compatible system using
                #   a Conway polynomial.
                # - `prefix` -- a string used to generate names for
                #   automatically constructed finite fields
                #
                # See the docstring of FiniteFieldFactory for examples.
                #
                # Once algebraic closures of finite fields are
                # implemented, this syntax should be superseded by
                # something like the following:
                #
                #     sage: Fpbar = GF(5).algebraic_closure('z')
                #     sage: F, e = Fpbar.subfield(3)  # e is the embedding into Fpbar
                #     sage: F
                #     Finite field in z3 of size 5^3
                #
                # This temporary solution only uses actual Conway
                # polynomials (no pseudo-Conway polynomials), since
                # pseudo-Conway polynomials are not unique, and until
                # we have algebraic closures of finite fields, there
                # is no good place to store a specific choice of
                # pseudo-Conway polynomials.
                if name is None:
                    if not (kwds.has_key('conway') and kwds['conway']):
                        raise ValueError(
                            "parameter 'conway' is required if no name given")
                    if not kwds.has_key('prefix'):
                        raise ValueError(
                            "parameter 'prefix' is required if no name given")
                    name = kwds['prefix'] + str(n)

                if kwds.has_key('conway') and kwds['conway']:
                    from conway_polynomials import conway_polynomial
                    if not kwds.has_key('prefix'):
                        raise ValueError(
                            "a prefix must be specified if conway=True")
                    if modulus is not None:
                        raise ValueError(
                            "no modulus may be specified if conway=True")
                    # The following raises a RuntimeError if no polynomial is found.
                    modulus = conway_polynomial(p, n)

                if modulus is None or isinstance(modulus, str):
                    # A string specifies an algorithm to find a suitable modulus.
                    if modulus == "default":  # for backward compatibility
                        modulus = None
                    modulus = GF(p)['x'].irreducible_element(n,
                                                             algorithm=modulus)
                elif isinstance(modulus, (list, tuple)):
                    modulus = GF(p)['x'](modulus)
                elif sage.rings.polynomial.polynomial_element.is_Polynomial(
                        modulus):
                    modulus = modulus.change_variable_name('x')
                else:
                    raise TypeError("wrong type for modulus parameter")
            else:
                raise ValueError(
                    "the order of a finite field must be a prime power.")

            return (order, name, modulus, impl, str(kwds), p, n, proof), kwds
Exemplo n.º 8
0
    def create_key_and_extra_args(self,
                                  order,
                                  name=None,
                                  modulus=None,
                                  names=None,
                                  impl=None,
                                  proof=None,
                                  check_irreducible=True,
                                  **kwds):
        """
        EXAMPLES::

            sage: GF.create_key_and_extra_args(9, 'a')
            ((9, ('a',), x^2 + 2*x + 2, 'givaro', '{}', 3, 2, True), {})
            sage: GF.create_key_and_extra_args(9, 'a', foo='value')
            ((9, ('a',), x^2 + 2*x + 2, 'givaro', "{'foo': 'value'}", 3, 2, True), {'foo': 'value'})
        """
        import sage.arith.all
        from sage.structure.proof.all import WithProof, arithmetic
        if proof is None:
            proof = arithmetic()
        with WithProof('arithmetic', proof):
            order = Integer(order)
            if order <= 1:
                raise ValueError(
                    "the order of a finite field must be at least 2")

            if order.is_prime():
                p = order
                n = Integer(1)
                if impl is None:
                    impl = 'modn'
                name = ('x', )  # Ignore name
                # Every polynomial of degree 1 is irreducible
                check_irreducible = False
            elif order.is_prime_power():
                if names is not None:
                    name = names
                if name is not None:
                    name = normalize_names(1, name)

                p, n = order.factor()[0]

                # The following is a temporary solution that allows us
                # to construct compatible systems of finite fields
                # until algebraic closures of finite fields are
                # implemented in Sage.  It requires the user to
                # specify two parameters:
                #
                # - `conway` -- boolean; if True, this field is
                #   constructed to fit in a compatible system using
                #   a Conway polynomial.
                # - `prefix` -- a string used to generate names for
                #   automatically constructed finite fields
                #
                # See the docstring of FiniteFieldFactory for examples.
                #
                # Once algebraic closures of finite fields are
                # implemented, this syntax should be superseded by
                # something like the following:
                #
                #     sage: Fpbar = GF(5).algebraic_closure('z')
                #     sage: F, e = Fpbar.subfield(3)  # e is the embedding into Fpbar
                #     sage: F
                #     Finite field in z3 of size 5^3
                #
                # This temporary solution only uses actual Conway
                # polynomials (no pseudo-Conway polynomials), since
                # pseudo-Conway polynomials are not unique, and until
                # we have algebraic closures of finite fields, there
                # is no good place to store a specific choice of
                # pseudo-Conway polynomials.
                if name is None:
                    if not ('conway' in kwds and kwds['conway']):
                        raise ValueError(
                            "parameter 'conway' is required if no name given")
                    if 'prefix' not in kwds:
                        raise ValueError(
                            "parameter 'prefix' is required if no name given")
                    name = kwds['prefix'] + str(n)

                if 'conway' in kwds and kwds['conway']:
                    from conway_polynomials import conway_polynomial
                    if 'prefix' not in kwds:
                        raise ValueError(
                            "a prefix must be specified if conway=True")
                    if modulus is not None:
                        raise ValueError(
                            "no modulus may be specified if conway=True")
                    # The following raises a RuntimeError if no polynomial is found.
                    modulus = conway_polynomial(p, n)

                if impl is None:
                    if order < zech_log_bound:
                        impl = 'givaro'
                    elif p == 2:
                        impl = 'ntl'
                    else:
                        impl = 'pari_ffelt'
            else:
                raise ValueError(
                    "the order of a finite field must be a prime power")

            # Determine modulus.
            # For the 'modn' implementation, we use the following
            # optimization which we also need to avoid an infinite loop:
            # a modulus of None is a shorthand for x-1.
            if modulus is not None or impl != 'modn':
                R = PolynomialRing(FiniteField(p), 'x')
                if modulus is None:
                    modulus = R.irreducible_element(n)
                if isinstance(modulus, str):
                    # A string specifies an algorithm to find a suitable modulus.
                    if modulus == "default":
                        from sage.misc.superseded import deprecation
                        deprecation(
                            16983,
                            "the modulus 'default' is deprecated, use modulus=None instead (which is the default)"
                        )
                        modulus = None
                    modulus = R.irreducible_element(n, algorithm=modulus)
                else:
                    if sage.rings.polynomial.polynomial_element.is_Polynomial(
                            modulus):
                        modulus = modulus.change_variable_name('x')
                    modulus = R(modulus).monic()

                    if modulus.degree() != n:
                        raise ValueError(
                            "the degree of the modulus does not equal the degree of the field"
                        )
                    if check_irreducible and not modulus.is_irreducible():
                        raise ValueError(
                            "finite field modulus must be irreducible but it is not"
                        )
                # If modulus is x - 1 for impl="modn", set it to None
                if impl == 'modn' and modulus[0] == -1:
                    modulus = None

            return (order, name, modulus, impl, str(kwds), p, n, proof), kwds
Exemplo n.º 9
0
    def create_key_and_extra_args(self,
                                  order,
                                  name=None,
                                  modulus=None,
                                  names=None,
                                  impl=None,
                                  proof=None,
                                  check_irreducible=True,
                                  **kwds):
        """
        EXAMPLES::

            sage: GF.create_key_and_extra_args(9, 'a')
            ((9, ('a',), x^2 + 2*x + 2, 'givaro', '{}', 3, 2, True), {})
            sage: GF.create_key_and_extra_args(9, 'a', foo='value')
            ((9, ('a',), x^2 + 2*x + 2, 'givaro', "{'foo': 'value'}", 3, 2, True), {'foo': 'value'})
        """
        import sage.arith.all
        from sage.structure.proof.all import WithProof, arithmetic
        if proof is None:
            proof = arithmetic()
        with WithProof('arithmetic', proof):
            order = Integer(order)
            if order <= 1:
                raise ValueError(
                    "the order of a finite field must be at least 2")

            if order.is_prime():
                p = order
                n = Integer(1)
                if impl is None:
                    impl = 'modn'
                name = ('x', )  # Ignore name
                # Every polynomial of degree 1 is irreducible
                check_irreducible = False
            elif order.is_prime_power():
                if names is not None:
                    name = names
                if name is not None:
                    name = normalize_names(1, name)

                p, n = order.factor()[0]
                if name is None:
                    if 'prefix' not in kwds:
                        kwds['prefix'] = 'z'
                    name = kwds['prefix'] + str(n)
                    if modulus is not None:
                        raise ValueError(
                            "no modulus may be specified if variable name not given"
                        )
                    if 'conway' in kwds:
                        del kwds['conway']
                        from sage.misc.superseded import deprecation
                        deprecation(
                            17569,
                            "the 'conway' argument is deprecated, pseudo-conway polynomials are now used by default if no variable name is given"
                        )
                    # Fpbar will have a strong reference, since algebraic_closure caches its results,
                    # and the coefficients of modulus lie in GF(p)
                    Fpbar = GF(p).algebraic_closure(kwds.get('prefix', 'z'))
                    # This will give a Conway polynomial if p,n is small enough to be in the database
                    # and a pseudo-Conway polynomial if it's not.
                    modulus = Fpbar._get_polynomial(n)
                    check_irreducible = False

                if impl is None:
                    if order < zech_log_bound:
                        impl = 'givaro'
                    elif p == 2:
                        impl = 'ntl'
                    else:
                        impl = 'pari_ffelt'
            else:
                raise ValueError(
                    "the order of a finite field must be a prime power")

            # Determine modulus.
            # For the 'modn' implementation, we use the following
            # optimization which we also need to avoid an infinite loop:
            # a modulus of None is a shorthand for x-1.
            if modulus is not None or impl != 'modn':
                R = PolynomialRing(FiniteField(p), 'x')
                if modulus is None:
                    modulus = R.irreducible_element(n)
                if isinstance(modulus, str):
                    # A string specifies an algorithm to find a suitable modulus.
                    if modulus == "default":
                        from sage.misc.superseded import deprecation
                        deprecation(
                            16983,
                            "the modulus 'default' is deprecated, use modulus=None instead (which is the default)"
                        )
                        modulus = None
                    modulus = R.irreducible_element(n, algorithm=modulus)
                else:
                    if sage.rings.polynomial.polynomial_element.is_Polynomial(
                            modulus):
                        modulus = modulus.change_variable_name('x')
                    modulus = R(modulus).monic()

                    if modulus.degree() != n:
                        raise ValueError(
                            "the degree of the modulus does not equal the degree of the field"
                        )
                    if check_irreducible and not modulus.is_irreducible():
                        raise ValueError(
                            "finite field modulus must be irreducible but it is not"
                        )
                # If modulus is x - 1 for impl="modn", set it to None
                if impl == 'modn' and modulus[0] == -1:
                    modulus = None

            return (order, name, modulus, impl, str(kwds), p, n, proof), kwds