Exemplo n.º 1
0
def test_variance_of_slope_sums():
    """
    Used to check the variance of the values formt he slopesum
    """

    ticker = 'GOOG'
    main_df = pd.read_pickle(settings.settings_dict['stock_data_path'])

    main_df = sample_slopes.create_slope_sum(main_df)

    slope_sums = main_df[ticker + "slope_sum"]

    print np.mean(main_df[ticker + "slope_sum"])
    print np.std(main_df[ticker + "slope_sum"])

    std = pd.rolling_std(slope_sums, window=20)

    _, ax2 = plt.subplots()

    ax2.plot(slope_sums)
    ax2.plot(slope_sums + std)
    ax2.plot(slope_sums - std)
    plt.legend(['Slope_Sum ', 'Slope_Sum +1 Std', 'Slope_Sum -1 Std'])
    plt.title(ticker + ' varrience of slope sum')
    plt.show()
Exemplo n.º 2
0
def test_slope_sum_stock_price():
    """
    Used to check the variance of the values formt he slopesum
    makes sure the slope sum is normially distribueted
    """

    ticker = 'FB'
    main_df = pd.read_pickle(settings.settings_dict['stock_data_path'])
    main_df = sample_slopes.create_slope_sum(main_df)

    slope_sums = main_df[ticker + "slope_sum"]

    print np.mean(main_df[ticker + "slope_sum"])
    print np.std(main_df[ticker + "slope_sum"])

    # test for normality
    assert jarque_bera(main_df[ticker + "slope_sum"])[1] < .005

    # std = pd.rolling_std(slope_sums, window=20)

    plt.figure(1)

    plt.subplot(211)
    plt.plot(main_df[ticker + "CLS"])

    plt.title(str(ticker) + ' Price and Slope Sum')

    plt.subplot(212)
    plt.plot(slope_sums)

    plt.show()
Exemplo n.º 3
0
def test_sample_slopes():

    data = {
        'col1CHG': [3, 3, 4, 5, 7, 8, 7, 6, 5, 4],
        'col2CHG': [6, 5, 5, 6, 7, 6, 4, 3, 3, 8],
        'col3CHG': [7, 6, 4, 6, 4, 2, 4, 5, 6, 5],
        'col4CHG': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        'col5CHG': [3, 3, 3, 3, 3, 3, 3, 3, 3, 3],
        'col6CHG': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        'col7CLS': [4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
        'col8CLS': [4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
        'col9CLS': [4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
    }

    stock_data = pd.DataFrame(data=data)
    print stock_data
    new_df_columns = sample_slopes.create_slope_sum(stock_data).columns

    counter = 0
    for column in new_df_columns:
        counter += 1

    # print new_df_columns
    assert counter == 13
    assert list(new_df_columns) == [
        u'col1CHG', u'col2CHG', u'col3CHG', u'col4CHG', u'col5CHG', u'col6CHG',
        u'col7CLS', u'col8CLS', u'col9CLS', u'col2slope_sum', u'col3slope_sum',
        u'col4slope_sum', u'col5slope_sum'
    ]
Exemplo n.º 4
0
def test_check_if_prior_days_have_a_buy_signal():
    """
    makes sure it can look backwards and pick out the 1 and the index
    """
    close = [
        1.2, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.4, 2.1, 2.6, 2.7, 2.1, 2.0,
        1.6, 1.9, 1.2, 1.6, 2, 2.1
    ]
    bid_stream = [1, 1, 0, 1, 0, 0, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

    ticker = 'FB'

    main_df = pd.read_pickle(settings.settings_dict['stock_data_path'])
    main_df = sample_slopes.create_slope_sum(main_df)

    Back_Test = back_test.BackTest(main_df,
                                   settings.settings_dict['model_path'])

    index = 5
    is_there_a_one, close_value = Back_Test.check_if_prior_days_have_a_buy_signal(
        bid_stream, close, index)

    while not is_there_a_one:
        index = index - 1
        is_there_a_one, close_value = Back_Test.check_if_prior_days_have_a_buy_signal(
            bid_stream, close, index)

    assert [is_there_a_one, close_value] == [True, 1.7]
Exemplo n.º 5
0
def test_different_lengths_of_objects():
    """
    This test is used to try out the returns calculator on the stock market data

    """

    ticker = 'FB'

    main_df = pd.read_pickle(settings.settings_dict['stock_data_path'])
    main_df = sample_slopes.create_slope_sum(main_df)

    Back_Test = back_test.BackTest(main_df,
                                   settings.settings_dict['model_path'])

    y_values = sample_slopes.generate_target_values(main_df, 18,
                                                    ticker + "CLS", 2)

    x_values = sample_slopes.create_batch_of_slopes(main_df, ticker + 'CLS',
                                                    18, y_values[1])

    array_of_batches = Back_Test.create_batch_of_slopes(
        main_df, ticker + 'slope_sum', 18, y_values[1])

    print array_of_batches, ' here is len of array_of_batch'

    print Back_Test.append_list_of_buy_sells(array_of_batches,
                                             ticker + "slope_sum")

    print "algorithm dfa ", sum(
        Back_Test.take_bid_stream_calculate_profit(ticker + "bid_stream", 18,
                                                   2)), ' alogritmsss'
    print "percent change", Back_Test.calculate_holding_profit(
        ticker + "CLS", 18, 2),
Exemplo n.º 6
0
def test_on_market_data_single_stock():
    """
    This test is used to try out the returns calculator on the stock market data

    """

    main_df = pd.read_pickle(settings.settings_dict['stock_data_path'])
    main_df = sample_slopes.create_slope_sum(main_df)

    Back_Test = back_test.BackTest(main_df,
                                   settings.settings_dict['model_path'])

    y_values = sample_slopes.generate_target_values(main_df, 18, 'FBCLS', 2)

    x_values = sample_slopes.create_batch_of_slopes(main_df, 'FBCLS', 18,
                                                    y_values[1])

    array_of_batches = Back_Test.create_batch_of_slopes(
        main_df, 'FBslope_sum', 18, y_values[1])

    print array_of_batches, ' here is lensss'

    print Back_Test.append_list_of_buy_sells(array_of_batches, "FBslope_sum")

    print "algorithm ", sum(
        Back_Test.take_bid_stream_calculate_return("FBbid_stream", 18,
                                                   2)) * 100, '%'
    print "log return ", sum(
        Back_Test.test_calculate_holding_log_return('FBCLS')) * 100, '%'
    print "percent change", Back_Test.calculate_holding_percent_change_return(
        "FBCLS") * 100, '%'
Exemplo n.º 7
0
def test_on_array_of_market():
    """
    This test is used to try out the returns calculator on the stock market data

    """
    tickers = [
        "GOOG", "FB", "INTC", 'TSM', "CSCO", "ORCL", "NVDA", "SAP", "IBM",
        "ADBE", "TXN", "AVGO", "CRM", "QCOM", "MU", "BIDU", "ADP", "VMW",
        "ATVI", "AMAT", "INTU", "CTSH", "EA", "EA", "NXPI", "INFY"
    ]

    # tickers = ["GOOG", "FB", "INTC", 'TSM', "CSCO"]

    main_df = pd.read_pickle(settings.settings_dict['stock_data_path'])
    main_df = sample_slopes.create_slope_sum(main_df)

    Back_Test = back_test.BackTest(main_df,
                                   settings.settings_dict['model_path'])

    with open('files/testing_files/return_output.csv', 'w') as f:
        for ticker in tickers:

            y_values = sample_slopes.generate_target_values(
                main_df, 18, ticker + "CLS", 2)

            x_values = sample_slopes.create_batch_of_slopes(
                main_df, ticker + 'CLS', 18, y_values[1])

            array_of_batches = Back_Test.create_batch_of_slopes(
                main_df, ticker + 'slope_sum', 18, y_values[1])

            Back_Test.append_list_of_buy_sells(array_of_batches,
                                               ticker + "slope_sum")

            algorithm_return = sum(
                Back_Test.take_bid_stream_calculate_return(
                    ticker + "bid_stream", 18, 2)) * 100
            log_return = sum(
                Back_Test.test_calculate_holding_log_return(ticker +
                                                            'CLS')) * 100
            percent_change = Back_Test.calculate_holding_percent_change_return(
                ticker + "CLS") * 100

            print "algorithm ", algorithm_return, '%'
            print "log return ", log_return, ' %'
            print "percent change", percent_change, '%'

            f.write(ticker + ',' + str(algorithm_return) + ',' +
                    str(log_return) + ',' + str(percent_change) + '\n')