Exemplo n.º 1
0
    def test_one_hot_decoding(self):
        self.assertEqual(common_tool.onehot_decoding([1, 0, 0, 0, 0]), 0)
        self.assertEqual(common_tool.onehot_decoding([0, 1, 0, 0, 0]), 1)
        self.assertEqual(common_tool.onehot_decoding([0, 0, 0, 0, 1]), 4)

        self.assertEqual(common_tool.onehot_decoding([0, 0, 1, 0, 1]), 2)
        self.assertEqual(common_tool.onehot_decoding([0, 1, 0, 1, 1]), 1)
Exemplo n.º 2
0
def infer(model, infer_data, ckpt_file):
    tf.reset_default_graph()

    with tf.Session(graph=model.graph) as sess_predict:
        model.saver.restore(sess_predict, ckpt_file)
        output = sess_predict.run([model.y], feed_dict={model.x: infer_data})
        classification = common.softmax(output)
        y = common.onehot_decoding(classification)
        return y
Exemplo n.º 3
0
    def test_infer_c(self):
        dll = conv_infer_c.init(self.so_lib_path, self.input_info,
                                self.output_info)
        res = []

        for i in prepare_infer_dataset():
            output = numpy.zeros(dtype=numpy.float32, shape=(1, 10))
            conv_infer_c.infer_c(dll,
                                 numpy.expand_dims(i, 0).astype(numpy.float32),
                                 output)
            classification = common_tool.softmax(output)
            y = common_tool.onehot_decoding(classification)
            res.append(y[0])

        self.assertCountEqual(res, [7, 5, 1, 0, 4, 1, 4, 9, 2, 9])
Exemplo n.º 4
0
 def test_one_hot_decoding_error(self):
     self.assertRaises(ValueError, lambda: common_tool.onehot_decoding([]))
     self.assertRaises(ValueError, lambda: common_tool.onehot_decoding(()))
Exemplo n.º 5
0
import os
from tensorflow import keras
import samples.utils.common_tool as common

if __name__ == '__main__':
    # prepare the infer date 28px * 28px image
    (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
    x_test = x_test.reshape(10000, 784) / 255.
    image_data = x_test[:10, ...]

    h5_model = os.path.join('model', 'tensorflow_mlp.h5')
    model = keras.models.load_model(h5_model)

    results = model.predict(image_data)

    # output the result
    print('Predict Index ', common.onehot_decoding(results))
Exemplo n.º 6
0
    # prepare the infer date 28px * 28px image
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_test = x_test.reshape(10000, 784) / 255.
    image_data = x_test[:10, ...]

    # model path
    so_lib_path = path.join(path.dirname(__file__), 'out_c', 'qumico.so')

    # Load
    input_info = np.ctypeslib.ndpointer(dtype=np.float32,
                                        ndim=2,
                                        shape=(1, 784),
                                        flags='CONTIGUOUS')

    output_info = np.ctypeslib.ndpointer(dtype=np.float32,
                                         ndim=2,
                                         shape=(1, 10),
                                         flags='CONTIGUOUS')

    dll = init(so_lib_path, input_info, output_info)

    # infer
    res = []
    for i in image_data:
        output = np.zeros(dtype=np.float32, shape=(1, 10))
        infer_c(dll, np.expand_dims(i, 0).astype(np.float32), output)
        classification = common.softmax(output)
        y = common.onehot_decoding(classification)
        res.append(y[0])
    print('Predict Index', res)  # [7, 2, 1, 0, 4, 1, 4, 9, 5, 9]