Exemplo n.º 1
0
def plot_2d(model, opts, ax):
    qx_max, nq2d = opts['qx_max'], opts['nq2d']
    q = np.linspace(-qx_max, qx_max, nq2d)
    data2d = empty_data2D(q, resolution=0.0)
    calculator = DirectModel(data2d, model)
    Iq2D = calculator()  #background=0)
    Iq2D = Iq2D.reshape(nq2d, nq2d)
    if opts['zscale'] == 'log':
        Iq2D = np.log(np.clip(Iq2D, opts['vmin'], np.inf))
    ax.imshow(Iq2D,
              interpolation='nearest',
              aspect=1,
              origin='lower',
              extent=[-qx_max, qx_max, -qx_max, qx_max],
              cmap=opts['colormap'])
    ax.set_xlabel(r'$Q_x \/(\AA^{-1})$')
    ax.set_ylabel(r'$Q_y \/(\AA^{-1})$')
Exemplo n.º 2
0
def plot_2d(model, opts, ax):
    # type: (KernelModel, Dict[str, Any], Axes) -> None
    """
    Create a 2-D image.
    """
    qx_max, nq2d = opts['qx_max'], opts['nq2d']
    q = np.linspace(-qx_max, qx_max, nq2d) # type: np.ndarray
    data2d = empty_data2D(q, resolution=0.0)
    calculator = DirectModel(data2d, model)
    Iq2D = calculator() #background=0)
    Iq2D = Iq2D.reshape(nq2d, nq2d)
    if opts['zscale'] == 'log':
        Iq2D = np.log(np.clip(Iq2D, opts['vmin'], np.inf))
    ax.imshow(Iq2D, interpolation='nearest', aspect=1, origin='lower',
              extent=[-qx_max, qx_max, -qx_max, qx_max], cmap=opts['colormap'])
    ax.set_xlabel(r'$Q_x \/(\AA^{-1})$')
    ax.set_ylabel(r'$Q_y \/(\AA^{-1})$')
Exemplo n.º 3
0
def build_model(model_name, n=150, qmax=0.5, **pars):
    """
    Build a calculator for the given shape.

    *model_name* is any sasmodels model.  *n* and *qmax* define an n x n mesh
    on which to evaluate the model.  The remaining parameters are stored in
    the returned calculator as *calculator.pars*.  They are used by
    :func:`draw_scattering` to set the non-orientation parameters in the
    calculation.

    Returns a *calculator* function which takes a dictionary or parameters and
    produces Iqxy.  The Iqxy value needs to be reshaped to an n x n matrix
    for plotting.  See the :class:`sasmodels.direct_model.DirectModel` class
    for details.
    """
    from sasmodels.core import load_model_info, build_model
    from sasmodels.data import empty_data2D
    from sasmodels.direct_model import DirectModel

    model_info = load_model_info(model_name)
    model = build_model(model_info)  #, dtype='double!')
    q = np.linspace(-qmax, qmax, n)
    data = empty_data2D(q, q)
    calculator = DirectModel(data, model)

    # stuff the values for non-orientation parameters into the calculator
    calculator.pars = pars.copy()
    calculator.pars.setdefault('backgound', 1e-3)

    # fix the data limits so that we can see if the pattern fades
    # under rotation or angular dispersion
    Iqxy = calculator(theta=0, phi=0, psi=0, **calculator.pars)
    Iqxy = np.log(Iqxy)
    vmin, vmax = clipped_range(Iqxy, 0.95, mode='top')
    calculator.limits = vmin, vmax + 1

    return calculator