Exemplo n.º 1
0
def main(Qstr):
    Q = float(Qstr)
    if shape == 'sphere':
        print("exact", NORM * sp.sas_3j1x_x(Q * RADIUS)**2)
    print("gauss-20", *gauss_quad_2d(Q, n=20))
    print("gauss-76", *gauss_quad_2d(Q, n=76))
    print("gauss-150", *gauss_quad_2d(Q, n=150))
    print("gauss-500", *gauss_quad_2d(Q, n=500))
    print("gauss-1025", *gauss_quad_2d(Q, n=1025))
    print("gauss-2049", *gauss_quad_2d(Q, n=2049))
    print("gauss-20 usub", *gauss_quad_usub(Q, n=20))
    print("gauss-76 usub", *gauss_quad_usub(Q, n=76))
    print("gauss-150 usub", *gauss_quad_usub(Q, n=150))
    #gridded_2d(Q, n=2**8+1)
    gridded_2d(Q, n=2**10 + 1)
    #gridded_2d(Q, n=2**12+1)
    #gridded_2d(Q, n=2**15+1)
    if shape not in ('paracrystal', 'core_shell_parallelepiped'):
        # adaptive forms on models for which the calculations are fast enough
        print("dblquad", *scipy_dblquad_2d(Q))
        print("semi-romberg-100", *semi_romberg_2d(Q, n=100))
        print("romberg", *scipy_romberg_2d(Q))
        with mp.workprec(100):
            print("mpmath", *mp_quad_2d(mp.mpf(Qstr), shape))
    plot_2d(Q, n=200)
Exemplo n.º 2
0
 def sphere(qab, qc):
     q = sqrt(qab**2 + qc**2)
     return sas_3j1x_x(q * radius)
Exemplo n.º 3
0
def Iq(q, sld, sld_shell, sld_poly, sld_solvent, radius, t_shell, poly_sig,
       C_infty, M0, Mn, nu, v):

    # Bond angles
    theta0 = 68.0 * pi / 180.0

    # Kuhn length
    b = C_infty * 1.54 / cos(theta0 / 2.0)

    # Deg. of polymerization
    N = (Mn / M0) * cos(theta0 / 2.0) / C_infty

    # Volume of core regions:
    Rcoreshell = radius + t_shell
    Vcore = 4.0 / 3.0 * pi * radius**3
    Vcoreshell = 4.0 / 3.0 * pi * (radius + t_shell)**3

    # Number of grafted chains per core:
    Ng = poly_sig * 4.00 * pi * (0.1 * Rcoreshell) * (0.1 * Rcoreshell)

    Vtotal = Vcoreshell + Ng * N * v

    # One over excl. vol. parm.:
    onu = 1.0 / nu
    o2nu = 1.0 / 2.0 / nu

    # Propagator function:
    Ea = sas_sinx_x(q * (Rcoreshell))

    # Polymer size variable
    Usub = (q * b)**2 * N**(2 * nu) / 6.0

    # Form factor amplitude of core-shell sphere:
    with errstate(divide='ignore'):
        Fs = (sld - sld_shell) * Vcore * sas_3j1x_x(q * radius) + (
            sld_shell - sld_solvent) * Vcoreshell * sas_3j1x_x(q * Rcoreshell)

    # Form factor amplitude of the polymer:
    with errstate(divide='ignore'):
        Fp = N * v * o2nu * power(
            Usub, -o2nu) * sas_gamma(o2nu) * sas_gammainc(o2nu, Usub)

    # Form factor of the polymer (Pp(q) is not simply Fp(q)^2!!):
    with errstate(divide='ignore'):
        Pp = (N * v)**2 * (onu * power(Usub, -o2nu) * sas_gamma(o2nu) *
                           sas_gammainc(o2nu, Usub) - onu * power(Usub, -onu) *
                           sas_gamma(onu) * sas_gammainc(onu, Usub))

    # Combine all terms to form intensity:
    #
    # Term 1: Core-shell particle:
    inten = Fs * Fs

    # Term 2: Polymer
    inten = inten + Ng * (sld_poly - sld_solvent) * (sld_poly -
                                                     sld_solvent) * Pp

    # Term 3: Particle/polymer crossterm:
    inten = inten + 2.0 * Ng * (sld_poly - sld_solvent) * Fs * Ea * Fp

    # Term 4: Polymer/polymer crossterm:
    inten = inten + Ng * (Ng - 1) * (sld_poly - sld_solvent) * (
        sld_poly - sld_solvent) * Fp * Ea * Ea * Fp
    with errstate(divide='ignore'):
        inten = inten * 1.0e-4 / Vtotal

    return inten
Exemplo n.º 4
0
def Iq(q,
       sld,
       sld_poly,
       sld_solvent,
       radius=60,
       poly_sig=0.50,
       rg=40,
       nu=0.5,
       v_poly=30):
    """
    :param q:              Input q-value
    :param sld:		   Core scattering length density
    :param sld_poly:       Polymer scattering length density
    :param sld_solvent:    Solvent scattering length density
    :param radius:         Core radius
    :param poly_sig:       Polymer grafting density
    :param rg:             Grafted polymer radius of gyration
    :param nu:             Grafted polymer excluded volume parameter
    :param v_poly:         Volume of one polymer 
    :return:               Calculated intensity
    """

    # Number of grafted chains per core:
    Ng = poly_sig * 4.00 * pi * (0.1 * radius) * (0.1 * radius)

    # Volume of core regions:
    Vcore = 4.0 / 3.0 * pi * radius**3
    Vtotal = Vcore + Ng * v_poly

    # One over excl. vol. parm.:
    onu = 1.0 / nu
    o2nu = 1.0 / 2.0 / nu

    # Propagator function:
    Ea = sas_sinx_x(q * radius)

    # Polymer size variable
    Usub = (q * rg)**2 * (2.0 * nu + 1.0) * (2.0 * nu + 2.0) / 6.0

    # Form factor amplitude of core-shell sphere:
    with errstate(divide='ignore'):
        Fs = 3.0 * (sld - sld_solvent) * Vcore * sas_3j1x_x(q * radius)

    # Form factor amplitude of the polymer:
    with errstate(divide='ignore'):
        Fp = o2nu * power(Usub, -o2nu) * sas_gamma(o2nu) * sas_gammainc(
            o2nu, Usub)

    # Form factor of the polymer (Pp(q) is not simply Fp(q)^2!!):
    with errstate(divide='ignore'):
        Pp = onu * power(Usub, -o2nu) * sas_gamma(o2nu) * sas_gammainc(
            o2nu, Usub) - onu * power(
                Usub, -onu) * sas_gamma(onu) * sas_gammainc(onu, Usub)

    # Combine all terms to form intensity:
    #
    # Term 1: Core-shell particle:
    inten = Fs * Fs

    # Term 2: Polymer
    inten = inten + Ng * v_poly * v_poly * (sld_poly - sld_solvent) * (
        sld_poly - sld_solvent) * Pp

    # Term 3: Particle/polymer crossterm:
    inten = inten + 2.0 * Ng * v_poly * (sld_poly - sld_solvent) * Fs * Ea * Fp

    # Term 4: Polymer/polymer crossterm:
    inten = inten + Ng * (Ng - 1) * v_poly * v_poly * (
        sld_poly - sld_solvent) * (sld_poly - sld_solvent) * Fp * Ea * Ea * Fp
    with errstate(divide='ignore'):
        inten = inten * 1.0e-6 * 1.0e-6 * 1.0e8 / Vtotal

    return inten
Exemplo n.º 5
0
def main():
    import argparse

    parser = argparse.ArgumentParser(
        description="asymmetric integration explorer",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )
    parser.add_argument('-s',
                        '--shape',
                        choices=SHAPES,
                        default='parallelepiped',
                        help='oriented shape')
    parser.add_argument('-q',
                        '--q_value',
                        type=str,
                        default='0.005',
                        help='Q value to evaluate')
    parser.add_argument('pars',
                        type=str,
                        nargs='*',
                        default=[],
                        help='p=val for p in shape parameters')
    opts = parser.parse_args()
    pars = {k: v for par in opts.pars for k, v in [par.split('=')]}
    build_shape(opts.shape, **pars)

    Q = float(opts.q_value)
    if opts.shape == 'sphere':
        print("exact", NORM * sp.sas_3j1x_x(Q * RADIUS)**2)

    # Methods from quadpy, if quadpy is available
    #  AlbrechtCollatz: [1-5]
    #  BazantOh: 9, 11, 13
    #  HeoXu: 13, 15, 17, 19-[1-2], 21-[1-6], 23-[1-3], 25-[1-2], 27-[1-3],
    #     29, 31, 33, 35, 37, 39-[1-2]
    #  FliegeMaier: 4, 9, 16, 25
    #  Lebedev: 3[a-c], 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 35,
    #     41, 47, 53, 59, 65, 71, 77 83, 89, 95, 101, 107, 113, 119, 125, 131
    #  McLaren: [1-10]
    #  Stroud: U3 3-1, U3 5-[1-5], U3 7-[1-2], U3 8-1, U3 9-[1-3],
    #     U3 11-[1-3], U3 14-1
    quadpy_method(Q, "AlbrechtCollatz:5")
    quadpy_method(Q, "HeoXu:39-2")
    quadpy_method(Q, "FliegeMaier:25")
    quadpy_method(Q, "Lebedev:19")
    quadpy_method(Q, "Lebedev:131")
    quadpy_method(Q, "McLaren:10")
    quadpy_method(Q, "Stroud:U3 14-1")

    print("gauss-20 points=%d => %.15g" % gauss_quad_2d(Q, n=20))
    print("gauss-76 points=%d => %.15g" % gauss_quad_2d(Q, n=76))
    print("gauss-150 points=%d => %.15g" % gauss_quad_2d(Q, n=150))
    print("gauss-500 points=%d => %.15g" % gauss_quad_2d(Q, n=500))
    print("gauss-1025 points=%d => %.15g" % gauss_quad_2d(Q, n=1025))
    print("gauss-2049 points=%d => %.15g" % gauss_quad_2d(Q, n=2049))
    print("gauss-20 usub points=%d => %.15g" % gauss_quad_usub(Q, n=20))
    print("gauss-76 usub points=%d => %.15g" % gauss_quad_usub(Q, n=76))
    print("gauss-150 usub points=%d => %.15g" % gauss_quad_usub(Q, n=150))

    #gridded_2d(Q, n=2**8+1)
    gridded_2d(Q, n=2**10 + 1)
    #gridded_2d(Q, n=2**12+1)
    #gridded_2d(Q, n=2**15+1)
    # adaptive forms on models for which the calculations are fast enough
    SLOW_SHAPES = {
        'fcc_paracrystal',
        'bcc_paracrystal',
        'sc_paracrystal',
        'core_shell_parallelepiped',
    }
    if opts.shape not in SLOW_SHAPES:
        print("dblquad", *scipy_dblquad_2d(Q))
        print("semi-romberg-100", *semi_romberg_2d(Q, n=100))
        print("romberg", *scipy_romberg_2d(Q))
        with mp.workprec(100):
            print("mpmath", *mp_quad_2d(mp.mpf(opts.q_value)))
    plot_2d(Q, n=200)