Exemplo n.º 1
0
def main():
    os.makedirs(DOWNSTREAM_DIR, exist_ok=True)
    os.makedirs(MODEL_DIR, exist_ok=True)

    params = get_params()

    x_train = np.load(X_TRAIN_NPY)
    y_train = np.load(Y_TRAIN_NPY)

    if params['ml_model'] == 'svc':
        pipeline = define_svc_pipeline()
    elif params['ml_model'] == 'tree':
        pipeline = define_tree_pipeline()
    else:
        pass

    train_model(pipeline, x_train, y_train)

    modelname = params['save_model_name']

    if params['save_format'] == 'sklearn':
        model_filename = f'{modelname}.pkl'
        sklearn_interface_filename = f'{modelname}_sklearn.yaml'
        save_helper.dump_sklearn(
            pipeline, os.path.join(
                MODEL_DIR, model_filename))
        save_helper.save_interface(modelname,
                                   os.path.join(MODEL_DIR, sklearn_interface_filename),
                                   [1, 4],
                                   str(x_train.dtype).split('.')[-1],
                                   [1, 3],
                                   'float32',
                                   DATA_TYPE.ARRAY,
                                   [{model_filename: MODEL_RUNTIME.SKLEARN}],
                                   PREDICTION_TYPE.CLASSIFICATION,
                                   'src.app.ml.iris.iris_predictor_sklearn',
                                   label_filepath=os.path.join(MODEL_DIR, LABEL_FILENAME))
    elif params['save_format'] == 'onnx':
        onnx_filename = f'{modelname}.onnx'
        onnx_interface_filename = f'{modelname}_onnx_runtime.yaml'
        save_helper.save_onnx(pipeline, os.path.join(MODEL_DIR, onnx_filename))
        save_helper.save_interface(modelname,
                                   os.path.join(MODEL_DIR, onnx_interface_filename),
                                   [1, 4],
                                   str(x_train.dtype).split('.')[-1],
                                   [1, 3],
                                   'float32',
                                   DATA_TYPE.ARRAY,
                                   [{onnx_filename: MODEL_RUNTIME.ONNX_RUNTIME}],
                                   PREDICTION_TYPE.CLASSIFICATION,
                                   'src.app.ml.iris.iris_predictor_onnx',
                                   label_filepath=os.path.join(MODEL_DIR, LABEL_FILENAME))
    else:
        pass

    shutil.copy2(LABEL_FILEPATH, os.path.join(MODEL_DIR, LABEL_FILENAME))
Exemplo n.º 2
0
def main():
    os.makedirs(MODEL_DIR, exist_ok=True)
    labels = save_helper.load_labels(LABEL_FILEPATH)
    _full_data = save_helper.load_data(DATA_FILEPATH)
    _data = [d[:4] for d in _full_data]
    _target = [d[4] for d in _full_data]
    data = split_dataset(_data, _target)

    svc_pipeline = define_svc_pipeline()
    svc_modelname = "iris_svc"
    svc_model_filename = f"{svc_modelname}.pkl"
    svc_sklearn_interface_filename = f"{svc_modelname}_sklearn.yaml"
    train_model(svc_pipeline, data["x_train"], data["y_train"])
    evaluate_model(svc_pipeline, data["x_test"], data["y_test"])
    save_helper.dump_sklearn(svc_pipeline,
                             os.path.join(MODEL_DIR, svc_model_filename))
    save_helper.save_interface(
        svc_modelname,
        os.path.join(MODEL_DIR, svc_sklearn_interface_filename),
        [1, 4],
        str(data["x_train"].dtype).split(".")[-1],
        [1, 3],
        "float32",
        DATA_TYPE.ARRAY,
        [{
            svc_model_filename: MODEL_RUNTIME.SKLEARN
        }],
        PREDICTION_TYPE.CLASSIFICATION,
        "src.app.ml.iris.iris_predictor_sklearn",
        label_filepath=LABEL_FILEPATH,
    )

    svc_onnx_filename = f"{svc_modelname}.onnx"
    svc_onnx_interface_filename = f"{svc_modelname}_onnx_runtime.yaml"
    save_helper.save_onnx(svc_pipeline,
                          os.path.join(MODEL_DIR, svc_onnx_filename))
    save_helper.save_interface(
        svc_modelname,
        os.path.join(MODEL_DIR, svc_onnx_interface_filename),
        [1, 4],
        str(data["x_train"].dtype).split(".")[-1],
        [1, 3],
        "float32",
        DATA_TYPE.ARRAY,
        [{
            svc_onnx_filename: MODEL_RUNTIME.ONNX_RUNTIME
        }],
        PREDICTION_TYPE.CLASSIFICATION,
        "src.app.ml.iris.iris_predictor_onnx",
        label_filepath=LABEL_FILEPATH,
    )

    tree_pipeline = define_tree_pipeline()
    tree_modelname = "iris_tree"
    tree_model_filename = f"{tree_modelname}.pkl"
    tree_sklearn_interface_filename = f"{tree_modelname}_sklearn.yaml"
    train_model(tree_pipeline, data["x_train"], data["y_train"])
    evaluate_model(tree_pipeline, data["x_test"], data["y_test"])
    save_helper.dump_sklearn(tree_pipeline,
                             os.path.join(MODEL_DIR, tree_model_filename))
    save_helper.save_interface(
        tree_modelname,
        os.path.join(MODEL_DIR, tree_sklearn_interface_filename),
        [1, 4],
        str(data["x_train"].dtype).split(".")[-1],
        [1, 3],
        "float32",
        DATA_TYPE.ARRAY,
        [{
            tree_model_filename: MODEL_RUNTIME.SKLEARN
        }],
        PREDICTION_TYPE.CLASSIFICATION,
        "src.app.ml.iris.iris_predictor_sklearn",
        label_filepath=LABEL_FILEPATH,
    )

    tree_onnx_filename = f"{tree_modelname}.onnx"
    tree_onnx_interface_filename = f"{tree_modelname}_onnx_runtime.yaml"
    save_helper.save_onnx(tree_pipeline,
                          os.path.join(MODEL_DIR, tree_onnx_filename))
    save_helper.save_interface(
        tree_modelname,
        os.path.join(MODEL_DIR, tree_onnx_interface_filename),
        [1, 4],
        str(data["x_train"].dtype).split(".")[-1],
        [1, 3],
        "float32",
        DATA_TYPE.ARRAY,
        [{
            tree_onnx_filename: MODEL_RUNTIME.ONNX_RUNTIME
        }],
        PREDICTION_TYPE.CLASSIFICATION,
        "src.app.ml.iris.iris_predictor_onnx",
        label_filepath=LABEL_FILEPATH,
    )
Exemplo n.º 3
0
def train_and_save(model, modelname: str, filename: str, x_train: np.ndarray,
                   y_train: np.ndarray, x_test: np.ndarray,
                   y_test: np.ndarray):
    train_model(model, x_train, y_train)
    evaluate_model(model, x_test, y_test)
    save_helper.dump_sklearn(model, os.path.join(MODEL_DIR, filename))
Exemplo n.º 4
0
def main():
    os.makedirs(DOWNSTREAM_DIR, exist_ok=True)

    params = get_params()

    x_train = np.load(X_TRAIN_NPY)
    y_train = np.load(Y_TRAIN_NPY)

    if params["ml_model"] == "svc":
        pipeline = define_svc_pipeline()
    elif params["ml_model"] == "tree":
        pipeline = define_tree_pipeline()
    else:
        pass

    train_model(pipeline, x_train, y_train)

    modelname = params["save_model_name"]

    if params["save_format"] == "sklearn":
        sklearn_filename = f"{modelname}.pkl"
        sklearn_filepath = os.path.join(DOWNSTREAM_DIR, sklearn_filename)
        sklearn_modelpath = os.path.join(MODEL_DIR, sklearn_filename)
        save_helper.dump_sklearn(pipeline, sklearn_filepath)
        save_helper.dump_sklearn(pipeline, sklearn_modelpath)

        sklearn_interface_filename = f"{modelname}_sklearn.yaml"
        save_helper.save_interface(
            modelname,
            os.path.join(MODEL_DIR, sklearn_interface_filename),
            [1, 4],
            str(x_train.dtype).split(".")[-1],
            [1, 3],
            "float32",
            DATA_TYPE.ARRAY,
            [{
                sklearn_filepath: MODEL_RUNTIME.SKLEARN
            }],
            PREDICTION_TYPE.CLASSIFICATION,
            "src.app.ml.iris.iris_predictor_sklearn",
            label_filepath=os.path.join(DOWNSTREAM_DIR, LABEL_FILENAME),
        )
    elif params["save_format"] == "onnx":
        onnx_filename = f"{modelname}.onnx"
        onnx_filepath = os.path.join(DOWNSTREAM_DIR, onnx_filename)
        onnx_modelpath = os.path.join(MODEL_DIR, onnx_filename)
        save_helper.save_onnx(pipeline, onnx_filepath)
        save_helper.save_onnx(pipeline, onnx_modelpath)

        onnx_interface_filename = f"{modelname}_onnx_runtime.yaml"
        save_helper.save_interface(
            modelname,
            os.path.join(MODEL_DIR, onnx_interface_filename),
            [1, 4],
            str(x_train.dtype).split(".")[-1],
            [1, 3],
            "float32",
            DATA_TYPE.ARRAY,
            [{
                onnx_filepath: MODEL_RUNTIME.ONNX_RUNTIME
            }],
            PREDICTION_TYPE.CLASSIFICATION,
            "src.app.ml.iris.iris_predictor_onnx",
            label_filepath=os.path.join(DOWNSTREAM_DIR, LABEL_FILENAME),
        )
    else:
        pass

    shutil.copy2(LABEL_FILEPATH, os.path.join(DOWNSTREAM_DIR, LABEL_FILENAME))