Exemplo n.º 1
0
def example_3_3():
    """
    Example 3.3 Rectangular Body Under Uniaxial Tension: Assembly of Global Equations and Solution
    A rectangular body is modelled by 3 S-elements as shown in Figure 3.3a.
    The dimensions (Unit: m) are indicated in Figure 3.3 with b = 1.
    The material constant are Young’s modulus E = 10 GPa and Poisson’s ratio ν = 0.25.
    The input of the S-element data and the assembly of the global stiffness matrix are illustrated.
    """
    example = example3SElements()
    coord = example['coord']
    sdConn = example['sdConn']
    sdSC = example['sdSC']
    mat = example['mat']

    # solution of S-elements and assemblage of global stiffness and mass matrices
    sdSln, K, M = sbfem.sbfemAssembly(coord, sdConn, sdSC, mat)

    return {'in': example, 'out': {'sdSln': sdSln, 'K': K, 'M': M}}
Exemplo n.º 2
0
def example_3_4():
    """
    Example 3.4 Uniaxial Tension of a Rectangular Body.
    Consider the problem shown in Figure 3.3, Example 3.3 on page 90.
    A vertical force F = 1000 KN∕m is applied at Nodes 3 and 8.
    Determine the nodal displacements and the support reactions.
    """
    example = example3SElements()
    coord = example['coord']
    sdConn = example['sdConn']
    sdSC = example['sdSC']
    mat = example['mat']
    F = example['F']
    BC_Disp = example['BC_Disp']

    # solution of S-elements and assemblage of global stiffness and mass matrices
    sdSln, K, M = sbfem.sbfemAssembly(coord, sdConn, sdSC, mat)

    # Static solution of nodal displacements and forces
    d, F = sbfem.solverStatics(K, BC_Disp, F)

    return {'in': example, 'out': {'d': d, 'F': F, 'sdSln': sdSln}}
Exemplo n.º 3
0
def example_3_9(nq=4, magnFct=0.2):
    """
    Example 3.9 Edge-cracked Circular Body
    A circular body under uniform radial tension p is shown in Figure 3.11a.
    A crack of length a exists at the left edge.
    The material constants are Young’s modulus E, and Poisson’s ratio ν = 0.25. Assume plane stress condition.
    Determine the crack opening displacement (COD) Δu_y at left edge.
    :param nq:  # number of elements on one quadrant
    :param magnFct: magnification factor of deformed mesh
    """
    # Input
    R = 1  # radius of circular body
    p = 1000  # radial surface traction (KPa)
    E = 10E6  # E in KPa
    nu = 0.25  # Poisson’s ratio
    den = 2  # mass density in Mg∕m 3

    a = 0.75 * R  # crack length

    # Mesh
    # nodal coordinates. One node per row [x, y]
    n = 4 * nq  # number of element on boundary
    dangle = 2 * math.pi / n  # angular increment of an element Δ θ
    angle = np.arange(-math.pi, math.pi + dangle / 5,
                      dangle)  # angular coordinates of nodes
    # Note: there are two nodes at crack mouth with the same coordinates
    # nodal coordinates x = R cos(θ), y = R sin(θ)
    coord = R * np.vstack((np.cos(angle), np.sin(angle))).T

    # Input S-element connectivity as a cell array (one S-element per cell).
    # In a cell, the connectivity of line elements is given by one element per row [Node-1 Node-2].
    sdConn = [np.vstack((np.arange(0, n), np.arange(1, n + 1))).T]
    # Note: elements form an open loop
    # select scaling centre at crack tip
    sdSC = np.array([a - R, 0])

    # Materials
    mat = sbfem.Material(D=sbfem.elasticityMatrixForPlaneStress(E, nu),
                         den=den)

    # Boundary conditions
    # displacement constraints. One constraint per row: [Node Dir Disp]
    BC_Disp = np.array([[utils.matlabToPythonIndices(nq + 1), 1, 0],
                        [utils.matlabToPythonIndices(2 * nq + 1), 2, 0],
                        [utils.matlabToPythonIndices(3 * nq + 1), 1,
                         0]])  # constrain rigid-body motion
    eleF = R * dangle * p  # resultant radial force on an element pRΔ_θ
    # assemble radial nodal forces {F_r}
    nodalF = np.hstack((eleF / 2, eleF * np.ones(n - 1), eleF / 2))
    # nodal forces. One node per row: [Node Dir F]
    # F_x = F_r*cos(θ), F_y = F_r*sin(θ)
    BC_Frc = np.vstack(
        (np.hstack((np.arange(0, n + 1), np.arange(0, n + 1))),
         np.hstack((np.ones(n + 1), 2 * np.ones(n + 1))),
         np.hstack((nodalF * np.cos(angle), nodalF * np.sin(angle))))).T

    # Plot mesh
    # opt = {'LineSpec':'-k', 'sdSC':sdSC, 'PlotNode':1, 'LabelNode':1, 'BC_Disp':BC_Disp, 'title':'MESH', 'show':True}  # plotting options
    # utils.plotSBFEMesh(coord, sdConn, opt)

    # % solution of S-elements and global stiffness and mass matrices
    sdSln, K, M = sbfem.sbfemAssembly(coord, sdConn, sdSC, mat)

    # Assemblage external forces
    ndn = 2  # 2 DOFs per node
    NDof = ndn * len(coord)  # number of DOFs
    F = np.zeros(NDof)  # initializing right-hand side of equation [K]{u} = {F}
    F = sbfem.addNodalForces(BC_Frc, F)  # add prescribed nodal forces

    # Static solution
    U, F = sbfem.solverStatics(K, BC_Disp, F)

    CODnorm = (U[-1] - U[1]) * E / (p * R)

    # Internal displacements and stresses
    # strain modes of S-elements
    sdStrnMode = sbfem.strainModesOfSElements(sdSln)
    # integration constants of S-element
    sdIntgConst = sbfem.integrationConstsOfSElements(U, sdSln)

    isd = utils.matlabToPythonIndices(1)  # S-element number
    xi = np.arange(1, 0 - 1E-5, -0.01)**2  # radial coordinates

    Umax = np.max(np.abs(U))  # maximum displacement
    fct = magnFct / Umax  # factor to magnify the displacement to 0.2 m argument nodal coordinates

    # % initialization of variables for plotting
    X = np.zeros((len(xi), len(sdSln[isd]['node'])))
    Y = np.zeros_like(X)
    C = np.zeros_like(X)
    # displacements and strains at the specified radial coordinate
    for ii in range(len(xi)):
        nodexy, dsp, strnNode, GPxy, strnEle = sbfem.displacementsAndStrainsOfSelement(
            xi[ii], sdSln[isd], sdStrnMode[isd], sdIntgConst[isd])
        deformed = nodexy + fct * (np.reshape(dsp, (2, -1), order='F')).T
        # coordinates of grid points
        X[ii, :] = deformed[:, 0].T
        Y[ii, :] = deformed[:, 1].T
        strsNode = np.matmul(mat.D, strnNode)  # nodal stresses
        C[ii, :] = strsNode[1, :]  # store σ_yy for plotting

    return {
        'in': {
            'coord': coord,
            'sdConn': sdConn,
            'sdSC': sdSC,
            'mat': mat,
            'F': F,
            'BC_Disp': BC_Disp
        },
        'out': {
            'nodalDisp': U,
            'CODnorm': CODnorm,
            'X': X,
            'Y': Y,
            'C': C
        }
    }
Exemplo n.º 4
0
def example_3_8(isd, xi):
    """
    Example 3.8 Patch Test on Distorted Polygon S-elements
    A patch test on a unit square shown in Figure 3.10a is performed.
    :param isd:  # S-element number
    :param xi:  # radial coordinate
    """
    # Mesh
    # nodal coordinates. One node per row [x y]
    x1, y1 = 0.5, 0.5  # Figure b
    # x1, y1 = 0.05, 0.95  # Figure c
    coord = np.array([[x1, y1], [0, 0], [0.1, 0], [1, 0], [1, 1], [0, 1],
                      [0, 0.1]])
    # Input S-element connectivity as a cell array (One S-element per cell).
    # In a cell, the connectivity of line elements is given by one element per row
    # [Node-1 Node-2].
    sdConn = [
        utils.matlabToPythonIndices(np.array([[1, 7], [7, 2], [2, 3],
                                              [3, 1]])),  # S-element 1
        utils.matlabToPythonIndices(
            np.array([[1, 3], [3, 4], [4, 5], [5, 6], [6, 7],
                      [7, 1]]))  # S-element 2
    ]

    # coordinates of scaling centres of S-elements.
    if x1 > y1:  # extension of line 21 intersecting right edge of the square
        sdSC = np.array([[x1 / 2, y1 / 2],
                         [(1 + x1) / 2, y1 * (1 + x1) / (2 * x1)]])
    else:  # extension of line 21 intersecting top edge of the square
        sdSC = np.array([[x1 / 2, y1 / 2],
                         [x1 * (1 + y1) / (2 * y1), (1 + y1) / 2]])

    # Materials
    mat = sbfem.Material(D=sbfem.elasticityMatrixForPlaneStress(1, 0.25),
                         den=2)

    # Boundary conditions
    # displacement constrains. One constrain per row: [Node Dir Disp]
    BC_Disp = np.array([[utils.matlabToPythonIndices(2), 1, 0],
                        [utils.matlabToPythonIndices(2), 2, 0],
                        [utils.matlabToPythonIndices(4), 2, 0]])
    # assemble load vector
    ndn = 2  # 2 DOFs per node
    NDof = ndn * len(coord)  # number of DOFs
    F = np.zeros(NDof)  # initializing right-hand side of equation [K]{u} = {F}

    # horizontal tension
    # edge = [ 4 5; 6 7; 7 2];
    # trac = [1 0 1 0; -1 0 -1 0; -1 0 -1 0]’;
    # vertical tension
    # edge = [2 3; 3 4; 5 6];
    # trac = [0 -1 0 -1; 0 -1 0 -1; 0 1 0 1]’;
    # pure shear
    # edges subject to tractions, one row per edge
    edge = utils.matlabToPythonIndices(
        np.array([[2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 2]]))
    # tractions, one column per edge
    trac = np.array([[-1, 0, -1, 0], [-1, 0, -1, 0], [0, 1, 0, 1],
                     [1, 0, 1, 0], [0, -1, 0, -1], [0, -1, 0, -1]]).T
    F = sbfem.addSurfaceTraction(coord, edge, trac, F)

    # Static solution
    # solution of S-elements and assemblage of global stiffness and mass matrices
    sdSln, K, M = sbfem.sbfemAssembly(coord, sdConn, sdSC, mat)
    # Static solution of nodal displacements and forces
    d, F = sbfem.solverStatics(K, BC_Disp, F)

    # Stresses
    # strain modes of S-elements
    sdStrnMode = sbfem.strainModesOfSElements(sdSln)
    # integration constants
    sdIntgConst = sbfem.integrationConstsOfSElements(d, sdSln)
    # displacements and strains at specified radial coordinate
    nodexy, dsp, strnNode, GPxy, strnEle = sbfem.displacementsAndStrainsOfSelement(
        xi, sdSln[isd], sdStrnMode[isd], sdIntgConst[isd])
    # compute stresses Eq. (A.11)
    stresses = np.matmul(mat.D, strnEle)

    return {
        'in': {
            'coord': coord,
            'sdConn': sdConn,
            'sdSC': sdSC,
            'mat': mat,
            'F': F,
            'BC_Disp': BC_Disp
        },
        'out': {
            'd': d,
            'sdStrnMode': sdStrnMode,
            'sdIntgConst': sdIntgConst,
            'nodexy': nodexy,
            'dsp': dsp,
            'strnNode': strnNode,
            'GPxy': GPxy,
            'strnEle': strnEle,
            'stresses': stresses
        }
    }
Exemplo n.º 5
0
def example_3_6():
    """
    Example 3.6 An Edge-cracked Rectangular Body Subject to Tension
    An edge-cracked rectangular body is shown in Figure 3.8a with the length b = 0.1 m.
    The base of the body is fixed and a uniform tension p = 1 MPa is applied at the top.
    The material properties are Young’s modulus E = 10 GPa and Poisson’s ratio ν = 0.25.
    Plane stress conditions are assumed.
    Determine the crack opening displacements (CODs).
    """
    # Mesh
    # nodal coordinates in mm. One node per row [x y]
    b = 0.1
    coord = b * np.array([[0, 0], [0, -0.5], [0, -1], [0.5, -1], [1, -1],
                          [1.5, -1], [2, -1], [2, -0.5], [2, 0], [2, 0.5],
                          [2, 1], [1.5, 1], [1, 1], [0.5, 1], [0, 1], [0, 0.5],
                          [0, 1E-14], [0, -2], [0, -3], [1, -3], [2, -3],
                          [2, -2], [3, -3], [4, -3], [4, -2], [4, -1], [3, -1],
                          [4, 0], [4, 1], [3, 1], [4, 2], [4, 3], [3, 3],
                          [2, 3], [2, 2], [1, 3], [0, 3], [0, 2]])

    # Input S-element connectivity as a cell array (One S-element per cell).
    # In a cell, the connectivity of line elements is given by one element per row [Node-1 Node-2]
    sdConn = [
        utils.matlabToPythonIndices(
            np.vstack((np.arange(1, 17), np.arange(2, 18))).T),  # S-element 1
        utils.matlabToPythonIndices(
            np.array([[3, 18], [18, 19], [19, 20], [20, 21], [21, 22], [22, 7],
                      [4, 3], [5, 4], [6, 5], [7, 6]])),  # S-element 2
        utils.matlabToPythonIndices(
            np.array([[21, 23], [23, 24], [24, 25], [25, 26], [26, 27],
                      [27, 7], [22, 21], [7, 22]])),  # S-element 3
        utils.matlabToPythonIndices(
            np.array([[8, 7], [9, 8], [27, 26], [7, 27], [26, 28], [28, 29],
                      [29, 30], [30, 11], [10, 9], [11, 10]])),  # S-element 4
        utils.matlabToPythonIndices(
            np.array([[30, 29], [11, 30], [29, 31], [31, 32], [32, 33],
                      [33, 34], [34, 35], [35, 11]])),  # S-element 5
        utils.matlabToPythonIndices(
            np.array([[12, 11], [13, 12], [14, 13], [15, 14], [35,
                                                               34], [11, 35],
                      [34, 36], [36, 37], [37, 38], [38, 15]]))  # S-element 6
    ]
    # coordinates of scaling centres of S-elements, one S-element per row
    sdSC = b * np.array([[1, 0], [1, -2], [3, -2], [3, 0], [3, 2], [1, 2]])

    # Materials
    mat = sbfem.Material(D=sbfem.elasticityMatrixForPlaneStress(10E9, 0.25),
                         den=2000)  # E in Pa, mass density in kg∕m 3

    # Boundary conditions
    # displacement constraints. One constraint per row: [Node Dir Disp]

    BC_Disp = np.array([[19, 1, 0], [19, 2, 0], [20, 1, 0], [20, 2, 0],
                        [21, 1, 0], [21, 2, 0], [23, 1, 0], [23, 2, 0],
                        [24, 1, 0], [24, 2, 0]])
    BC_Disp[:, 0] -= 1  # convert to python indices

    # assemble load vector
    ndn = 2  # 2 DOFs per node
    NDof = ndn * coord.shape[0]  # number of DOFs
    F = np.zeros(NDof)  # initializing right-hand side of equation [K]{u} = {F}
    edge = utils.matlabToPythonIndices(
        np.array([[32, 33], [33, 34], [34, 36],
                  [36, 37]]))  # edges subject to traction
    trac = np.array([[0, 1E6, 0,
                      1E6]]).T  # all edges have the same traction (in Pa),
    F = sbfem.addSurfaceTraction(coord, edge, trac, F)

    # solution of S-elements and assemblage of global stiffness and mass matrices
    sdSln, K, M = sbfem.sbfemAssembly(coord, sdConn, sdSC, mat)

    # Static solution of nodal displacements and forces
    d, F = sbfem.solverStatics(K, BC_Disp, F)

    NodalDisp = np.reshape(d, (2, -1), order='F').T
    # Crack opening displacement
    COD = NodalDisp[17 - 1, :] - NodalDisp[1 - 1, :]

    return {
        'in': {
            'coord': coord,
            'sdConn': sdConn,
            'sdSC': sdSC,
            'mat': mat,
            'F': F,
            'BC_Disp': BC_Disp
        },
        'out': {
            'd': d,
            'F': F,
            'COD': COD
        }
    }
Exemplo n.º 6
0
def example_3_5():
    """
    Example 3.5 A Deep Cantilever Beam Subject to Bending.
    A deep cantilever beam of height H = 1 m and length L = 2 m is shown in Figure 3.6a.
    A bending moment M = 100 kNm, which is equivalent to the linearly distributed surface traction
    with p = 600kN∕m, is applied at the free end.
    The material properties are Young’s modulus E = 10 GPa and Poisson’s ratio ν = 0.2.
    Plane stress conditions are assumed. Determine the deflection of the beam.
    """

    # Mesh
    # nodal coordinates. One node per row [x y]
    coord = np.array([[0, 1], [0, 0.5], [0, 0], [0.68, 1], [0.68, 0.63],
                      [0.49, 0.48], [0.5, 0], [1.35, 1], [2, 1], [1, 0.45],
                      [1.35, 0.62], [1, 0], [1.5, 0.47], [2, 0.5], [1.5, 0],
                      [2, 0]])

    # nodes of a polygon. The sequence follows counter-clockwise direction.
    polygon = utils.matlabToPythonIndices([
        np.array([3, 7, 6, 2]),
        np.array([15, 16, 14, 13]),
        np.array([2, 6, 5, 4, 1]),
        np.array([12, 15, 13, 11, 10]),
        np.array([7, 12, 10, 5, 6]),
        np.array([4, 5, 10, 11, 8]),
        np.array([8, 11, 13, 14, 9])
    ])

    # Input S-element connectivity as a cell array (One S-element per cell).
    # In a cell, the connectivity of line elements is given by one element per row [Node-1 Node-2].
    nsd = len(polygon)  # ltx number of S-elements
    sdConn = [None] * nsd  # initialising connectivity
    sdSC = np.zeros((nsd, 2))  # scaling centre
    for isub in range(nsd):
        # build connectivity
        sdConn[isub] = np.vstack(
            (polygon[isub], np.hstack(
                (polygon[isub][1:], polygon[isub][0:1])))).T
        # scaling centre at centroid of nodes (averages of nodal coorindates)
        sdSC[isub, :] = np.mean(coord[polygon[isub], :], axis=0)

    # Materials: elasticity matrix for plane stress condition
    mat = sbfem.Material(D=sbfem.elasticityMatrixForPlaneStress(10E9, 0.2),
                         den=2000)  # mass density in kg∕m 3

    # Boundary conditions
    # displacement constraints (or prescribed acceleration in a response history analysis).
    # One constraint per row: [Node Dir Disp]
    BC_Disp = np.array([[0, 1, 0], [0, 2, 0], [1, 1, 0], [1, 2, 0], [2, 1, 0],
                        [2, 2, 0]])

    # assemble nodal forces
    ndn = 2  # 2 DOFs per node
    NDof = ndn * coord.shape[0]  # number of DOFs
    F = np.zeros(NDof)  # initializing right-hand side of equation [K]{u} = {F}
    edge = utils.matlabToPythonIndices(np.array(
        [[16, 14], [14, 9]]))  # edges subject to tractions, one row per edge
    trac = np.array([[6E5, 0, 0, 0], [0, 0, -6E5,
                                      0]]).T  # tractions, one column per edge
    F = sbfem.addSurfaceTraction(coord, edge, trac, F)

    # solution of S-elements and assemblage of global stiffness and mass matrices
    sdSln, K, M = sbfem.sbfemAssembly(coord, sdConn, sdSC, mat)

    # Static solution of nodal displacements and forces
    d, F = sbfem.solverStatics(K, BC_Disp, F)

    return {
        'in': {
            'coord': coord,
            'sdConn': sdConn,
            'sdSC': sdSC,
            'mat': mat,
            'F': F,
            'BC_Disp': BC_Disp
        },
        'out': {
            'd': d,
            'F': F
        }
    }