Exemplo n.º 1
0
def format_bvals_bvecs(bvalsFN, bvecsFN, logFN=None):
    from scai_utils import cmd_stdout, info_log, error_log
    import numpy as np

    #=== Check the format of bvals and bvecs ===#

    import numpy as np

    (so, se) = cmd_stdout("wc -l %s" % bvecsFN)
    if len(se) > 0 or len(so) == 0:
        error_log("Cannot perform wc on bvecs file: %s" % bvecsFN, logFN=logFN)
    
    ln = int(so.split(" ")[0])
    info_log("ln = %d" % ln, logFN=logFN)
        
    if ln < 3:
        error_log("Unrecognized format in bvecs file: %s" % bvecsFN, \
                  logFN=logFN)
    elif ln == 3:
        #== Convert bvecs file ==#
        bvecs = np.genfromtxt(bvecsFN)
            
        assert(len(bvecs) == ln)
        bvecs = bvecs.T
            
        np.savetxt(bvecsFN, bvecs, fmt="%.15f")
        
        bvecs = np.genfromtxt(bvecsFN)
        lbv = len(bvecs)
        assert(lbv > 3)
        
        info_log("INFO: Swapped rows and columns in bvecs file: %s\n" \
                 % bvecsFN,
                 logFN=logFN)

        #== Convert bvals file ==#
        bvals = np.genfromtxt(bvalsFN).T
        np.savetxt(bvalsFN, bvals, fmt="%.15f")
        info_log("INFO: Swapped rows and columns in bvecs file: %s\nc" \
                 % bvecsFN,
                 logFN=logFN)
Exemplo n.º 2
0
def format_bvals_bvecs(bvalsFN, bvecsFN, logFN=None):
    from scai_utils import cmd_stdout, info_log, error_log
    import numpy as np

    #=== Check the format of bvals and bvecs ===#

    import numpy as np

    (so, se) = cmd_stdout("wc -l %s" % bvecsFN)
    if len(se) > 0 or len(so) == 0:
        error_log("Cannot perform wc on bvecs file: %s" % bvecsFN, logFN=logFN)

    ln = int(so.split(" ")[0])
    info_log("ln = %d" % ln, logFN=logFN)

    if ln < 3:
        error_log("Unrecognized format in bvecs file: %s" % bvecsFN, \
                  logFN=logFN)
    elif ln == 3:
        #== Convert bvecs file ==#
        bvecs = np.genfromtxt(bvecsFN)

        assert (len(bvecs) == ln)
        bvecs = bvecs.T

        np.savetxt(bvecsFN, bvecs, fmt="%.15f")

        bvecs = np.genfromtxt(bvecsFN)
        lbv = len(bvecs)
        assert (lbv > 3)

        info_log("INFO: Swapped rows and columns in bvecs file: %s\n" \
                 % bvecsFN,
                 logFN=logFN)

        #== Convert bvals file ==#
        bvals = np.genfromtxt(bvalsFN).T
        np.savetxt(bvalsFN, bvals, fmt="%.15f")
        info_log("INFO: Swapped rows and columns in bvecs file: %s\nc" \
                 % bvecsFN,
                 logFN=logFN)
Exemplo n.º 3
0
def generate_design_matrix(isAWS, matFN, bReverse=False):
# Input arguments:
#     isAWS: vector of 0's and 1's
#     matFN: output design matrix .mat file name 
#     bReverse: if AWS should be set to -1 and ANS to +1 (default: no)

    if len(isAWS) < 2:
        error_log("The design matrix cannot be generated because there are fewer than two subjects")

    if not matFN.endswith(".mat"):
        error_log("The input .mat file name %s has a wrong extension name" % matFN)

    X_line = 'X = ['
    for (i0, t_isAWS) in enumerate(isAWS):
        t_x = (float(t_isAWS) * 2.0 - 1.0)
        if bReverse:
            X_line += "%.1f; " % -t_x
        else:
            X_line += "%.1f; " % t_x

    X_line = X_line[:-2] + "];\n"
    X_line += "X = [ones(%d , 1), X];\n" % len(isAWS)
    X_line += "save('%s', 'X', '-v4');\n" % os.path.abspath(matFN)
    print(X_line) # DEBUG
    
    (t_path, t_fn) = os.path.split(os.path.abspath(matFN))
    mScriptGenX = os.path.join(t_path, 'gen_%s' % t_fn.replace(".mat", ".m"))

    mScriptGenX_f = open(mScriptGenX, "wt")
    mScriptGenX_f.write(X_line)
    mScriptGenX_f.close()
    check_file(mScriptGenX)


    matlabCmd = "%s -nosplash -nodesktop -r 'run %s; exit; '" % \
                (MATLAB_BIN, mScriptGenX)
    saydo(matlabCmd)
    check_file(matFN)
Exemplo n.º 4
0
        savemat(matFile, intRes)
        info_log("Saved intermediate results to file: %s" % matFile)


    info_log("Loaded intermediate results from file: %s" % matFile)
    intRes = loadmat(matFile)

    #== Verify the intermediate results ==#
    bVerified = True;
    bVerified = bVerified and (list(intRes["sIDs"]) == sIDs)
    bVerified = bVerified and (list(intRes["grps"]) == grps)
        
    if bVerified:
        info_log("Intermediate results verified.")
    else:
        error_log("Intermediate results veroficiation failed. Use --redo option to generate valid intermediate results.")

    morphInfo = intRes["morphInfo"]
    uniqueROIs = list(intRes["uniqueROIs"])

    uniqueROIs = [x.strip() for x in uniqueROIs]

    area_mm2 = intRes["area_mm2"][0]
    
    #=== Test analysis ===#
    import matplotlib.pyplot as plt

    roi_a = "rh_vPMC"
    roi_b = "rh_PT"
    
    ridx_a = uniqueROIs.index(roi_a)
Exemplo n.º 5
0
                    help="Force redo all steps (default: false)")

    if len(sys.argv) == 1:
        ap.print_help()
        sys.exit(0)
        
    args = ap.parse_args()

    #=== Input sanity check ===#
    check_dir(args.batchBase)
    check_dir(args.fsDir)

    #=== Check that SUBJECTS_DIR matches input argument ===#
    envFSDir = os.path.abspath(os.getenv("SUBJECTS_DIR"))
    if envFSDir != os.path.abspath(args.fsDir):
        error_log("Input FreeSurfer SUBJECTS_DIR does not match environmental SUBECTS_DIR")

    #=== Get the list of subjects ===#
    if args.group == None or len(args.group) == 0:
        wc = "*_*"
        bAll = True
    else:
        wc = args.group + "*"
        bAll = False;

    ds = glob.glob(os.path.join(args.batchBase, wc))
    if len(ds) == 0:
        raise Exception, "Cannot find subjects that match the selection criterion in directory: %s" % args.batchBase

    subjIDs = []
    subjIsAWS = []
Exemplo n.º 6
0
def calculate_roi_tensor_measures(parcName, roiList, wmDepths, TENSOR_MEASURES,
                                  HEMIS, dmriDir, annotDir, tensMeasMatFN,
                                  logFileName):
    #=== Load masks (gm and wm of different depths) ===#
    import os
    import nibabel as nb
    import numpy as np
    from scai_utils import check_file, check_dir, info_log, error_log

    mask_shapes = []

    nDepths = len(wmDepths)
    roiNames = []
    nzIdx = []
    for i0 in range(nDepths):
        nzIdx.append([])

    bSpeech = []

    parcDir = os.path.join(annotDir, parcName)
    for (i0, wmDepth) in enumerate(wmDepths):
        if wmDepth == -1:
            parcTypeDir = os.path.join(parcDir, "gm")
            info_log("Loading gray-matter masks")
        else:
            parcTypeDir = os.path.join(parcDir, "wm%dmm" % wmDepth)
            info_log("Loading white-matter masks of %d-mm depth" \
                     % wmDepth)

        for (i1, troi) in enumerate(roiList):
            for (i2, hemi) in enumerate(HEMIS):
                maskFN = os.path.join(parcTypeDir, \
                                      "%s_%s.diff.nii.gz" % (hemi, troi[0]))
                check_file(maskFN, logFN=logFileName)

                t_img = nb.load(maskFN)
                t_img_dat = t_img.get_data()

                mask_shapes.append(np.shape(t_img_dat))

                t_img_dat = np.ndarray.flatten(t_img_dat)
                nzIdx[i0].append(np.nonzero(t_img_dat)[0])

                if wmDepth == -1:
                    if troi[2] == 'N':
                        bSpeech.append(0)
                    else:
                        bSpeech.append(1)

                    roiNames.append("%s_%s" % (hemi, troi[0]))

    #=== Check that the dimensions of all mask images match ===#
    if len(np.unique(mask_shapes)) != 1:
        error_log("Non-unique matrix size among the mask files", logFN=logFN)

    #=== Load the dtifit_* files and extract the measures ===#
    nROIs = len(roiNames)
    assert (len(bSpeech) == nROIs)

    tensMeas = {}

    mask_shape = np.unique(mask_shapes)

    check_dir(dmriDir, logFN=logFileName)
    for (i0, measName) in enumerate(TENSOR_MEASURES):
        tensMeas[measName] = np.zeros([nROIs, nDepths])

        for (i1, t_depth) in enumerate(wmDepths):
            if t_depth == -1:
                info_log("Extracting tensor measure %s from gray matter" \
                         % measName)
            else:
                info_log(
                    "Extracting tensor measure %s from %d-mm deep white matter"
                    % (measName, t_depth))

            assert (len(nzIdx[i1]) == nROIs)

            for (i2, troi) in enumerate(roiNames):
                measImg = os.path.join(dmriDir, \
                                       "dtifit_%s.nii.gz" % measName)
                check_file(measImg, logFN=logFileName)

                t_img = nb.load(measImg)
                if not list(mask_shape[0]) == list(np.shape(t_img)):
                    error_log("The diffusion tensor measure volume %s (%s) does not have a dimension that matches those of the mask files" \
                              % (measImg, measName))

                t_img_dat = np.ndarray.flatten(t_img.get_data())

                tensMeas[measName][i2, i1] = \
                                       np.mean(t_img_dat[nzIdx[i1][i2]])

    #=== Write data to file ===#
    from scipy.io import savemat
    res = {
        "roiNames": roiNames,
        "bSpeech": bSpeech,
        "parcName": parcName,
        "maskShape": mask_shape,
        "wmDepths": wmDepths,
        "tensMeas": tensMeas
    }

    savemat(tensMeasMatFN, res)
    check_file(tensMeasMatFN, logFN=logFileName)

    info_log(
        "Tensor measures (%d types) and associated data were saved at: %s" %
        (len(TENSOR_MEASURES), tensMeasMatFN),
        logFN=logFileName)
        r_L1Dir = os.path.join(sID, "firstlevel_%s" % machineSettings[hostName]["modelName"])
        r_func2Struct_dat = os.path.join(sID, "nii", "func2struct.bbr.dat")
        spmTViewCmd_vol = "CONTR=%s; tkmedit ${S} T1.mgz -surfs -overlay ${RHYBASE}/%s/spmT_${CONTR}.img -overlay-reg ${RHYBASE}/%s -fthresh 6 -fmid 9" \
                          % (strContr, r_L1Dir, r_func2Struct_dat)

        info_log("# Commands for viewing spmT for contrast #%d in the volume: " % (i0 + 1))
        info_log("\t%s" % spmTViewCmd_vol)

        info_log("# Command for viewing spmT for contrast #%d on the surface: " \
                 % (i0 + 1))
        
        for hemi in HEMIS:
            spmTViewCmd_surf = "CONTR=%s; HEMI=%s; tksurfer ${S} ${HEMI} inflated -gray -overlay ${RHYBASE}/%s/spmT_${CONTR}.img -ovelay-reg ${RHYBASE}/%s -fthresh 6 -fmid 9" \
                               % (strContr, hemi, r_L1Dir,  r_func2Struct_dat)
            info_log("\t%s" % spmTViewCmd_surf)

        info_log(" ")

    #=== (Optional): Automatically run the batch commands ===%
    if args.runBatch != None and args.runBatch != "":
        if args.runBatch.lower() == "all":
            
            for (i0, cmd) in enumerate(batchCmds):
                saydo("%s; %s" % (cdCmd, cmd))
        else:
            if batchSteps.count(args.runBatch) == 0:
                error_log("Unrecognized step: %s" % args.runBatch)
            else:
                saydo("%s; %s" % (cdCmd, batchCmds[batchSteps.index(args.runBatch)]))
                
Exemplo n.º 8
0
def generate_conn_mat(roiList,
                      sc_roiList,
                      parcTypeDir,
                      parcTracksDir,
                      hemi,
                      arg_bSpeech,
                      maskType,
                      connFN,
                      logFN=None):
    import os
    import sys
    import numpy as np
    import nibabel as nb
    from scai_utils import check_file, check_dir, info_log, error_log

    bSC = sc_roiList != None  # Subcortical mode flag

    # Process cortical ROIs (this is needed for both SC and C matrix types)
    mask_shapes = []
    roiNames = []
    nzIdx = []
    bSpeech = []
    for (i0, troi) in enumerate(roiList):
        targROI = troi[0]
        maskFN = os.path.join(parcTypeDir, \
                              "%s_%s.diff.nii.gz" % (hemi, targROI))
        check_file(maskFN, logFN=logFN)

        t_img = nb.load(maskFN)
        t_img_dat = t_img.get_data()

        mask_shapes.append(np.shape(t_img_dat))

        t_img_dat = np.ndarray.flatten(t_img_dat)

        nzIdx.append(np.nonzero(t_img_dat)[0])
        roiNames.append(troi[0])
        if troi[2] == 'N':
            bSpeech.append(0)
        else:
            bSpeech.append(1)

    roiNames = np.array(roiNames)
    bSpeech = np.array(bSpeech)
    nzIdx = np.array(nzIdx)
    if arg_bSpeech:
        roiNames = roiNames[np.nonzero(bSpeech)[0]]
        nzIdx = nzIdx[np.nonzero(bSpeech)[0]]

    #print(roiNames) # DEBUG
    #print(bSpeech) # DEBUG

    # Process subcortical ROIs
    if bSC:
        parcSCDir = os.path.join(os.path.split(parcTypeDir)[0], "subcort")
        check_dir(parcSCDir)

        sc_roiNames = []
        sc_nzIdx = []
        for (i0, troi) in enumerate(sc_roiList):
            if (hemi == "lh" and troi.startswith("Left-")) or \
               (hemi == "rh" and troi.startswith("Right")):
                sc_roiNames.append(troi)

                maskFN = os.path.join(parcSCDir, \
                                      "%s.diff.nii.gz" % (troi))
                check_file(maskFN, logFN=logFN)

                t_img = nb.load(maskFN)
                t_img_dat = t_img.get_data()

                mask_shapes.append(np.shape(t_img_dat))

                t_img_dat = np.ndarray.flatten(t_img_dat)

                sc_nzIdx.append(np.nonzero(t_img_dat)[0])
                #print(sc_nzIdx[-1]) # DEBUG
                #print(maskFN) # DEBUG

        sc_roiNames = np.array(sc_roiNames)
        sc_nzIdx = np.array(sc_nzIdx)

        #print(sc_roiNames) # DEBUG

    nROIs = len(roiNames)
    assert (len(nzIdx) == nROIs)
    if len(np.unique(mask_shapes)) != 1:
        error_log("Non-unique matrix size among the mask files", logFN=logFN)
    imgShape = np.unique(mask_shapes)[0]

    if bSC:
        nROIs_sc = len(sc_roiNames)

    #=== Check the completion of seed-only probtrackx ===#
    #===     and calculate the conn matrix ===#
    if not bSC:
        d1_roiNames = roiNames
        d2_roiNames = roiNames
    else:
        d1_roiNames = sc_roiNames
        d2_roiNames = np.array(list(sc_roiNames) + list(roiNames))

    connMat = np.zeros([len(d1_roiNames), len(d2_roiNames)])

    #print(d2_roiNames) # DEBUG
    #print(len(connMat)) # DEBUG
    #print(len(connMat[0])) # DEBUG

    #print(parcTracksDir) # DEBUG

    if bSC:
        tmp_dir = os.path.split(parcTracksDir)[1]
        parcTracksSCDir = os.path.split(os.path.split(parcTracksDir)[0])[0]
        parcTracksSCDir = os.path.join(parcTracksSCDir, "tracks_sc", tmp_dir)
        #print(parcTracksSCDir) # DEBUG
        check_dir(parcTracksSCDir)

    for (i0, troi) in enumerate(d1_roiNames):
        seedROI = troi
        if not bSC:
            trackResDir = os.path.join(parcTracksDir,
                                       "%s_%s_%s" % \
                                       (hemi, seedROI, maskType))
        else:
            trackResDir = os.path.join(parcTracksSCDir, seedROI)

        check_probtrackx_complete(trackResDir,
                                  "seedOnly",
                                  doSeedNorm=True,
                                  doSize=True,
                                  logFN=logFN)

        fdt_norm = os.path.join(trackResDir, "fdt_paths_norm.nii.gz")
        t_img = nb.load(fdt_norm)
        t_img_dat = t_img.get_data()

        assert (list(np.shape(t_img_dat)) == list(imgShape))
        t_img_dat = np.ndarray.flatten(t_img_dat)

        for (i1, troi1) in enumerate(d2_roiNames):
            if not bSC:
                connMat[i0, i1] = np.mean(t_img_dat[nzIdx[i1]])
            else:
                if i1 < nROIs_sc:
                    connMat[i0, i1] = np.mean(t_img_dat[sc_nzIdx[i1]])
                else:
                    connMat[i0, i1] = np.mean(t_img_dat[nzIdx[i1 - nROIs_sc]])

    #=== Make symmetric ===#
    if not bSC:
        connMat = 0.5 * (connMat + connMat.T)

    #print(connMat) ## DEBUG

    #=== Write result .mat file ===#
    from scipy.io import savemat
    if not bSC:
        res = {"roiNames": roiNames, "connMat": connMat}
    else:
        res = {
            "d1_roiNames": d1_roiNames,
            "d2_roiNames": d2_roiNames,
            "connMat": connMat
        }

    savemat(connFN, res)
    print("connFN = " + connFN)
    check_file(connFN, logFN=logFN)

    info_log("Connectivity matrix and associated data were saved at: %s" \
             % (connFN),
             logFN=logFN)
Exemplo n.º 9
0
def calculate_roi_tensor_measures(parcName, roiList, wmDepths,
                                  TENSOR_MEASURES, HEMIS,
                                  dmriDir, annotDir, 
                                  tensMeasMatFN, logFileName):
    #=== Load masks (gm and wm of different depths) ===#
    import os
    import nibabel as nb
    import numpy as np
    from scai_utils import check_file, check_dir, info_log, error_log
    
    mask_shapes = []
        
    nDepths = len(wmDepths)
    roiNames = []
    nzIdx = []
    for i0 in range(nDepths):
        nzIdx.append([])
            
    bSpeech = []

    parcDir = os.path.join(annotDir, parcName)
    for (i0, wmDepth) in enumerate(wmDepths):
        if wmDepth == -1:
            parcTypeDir = os.path.join(parcDir, "gm")
            info_log("Loading gray-matter masks")
        else:
            parcTypeDir = os.path.join(parcDir, "wm%dmm" % wmDepth)
            info_log("Loading white-matter masks of %d-mm depth" \
                     % wmDepth)
            
        for (i1, troi) in enumerate(roiList):
            for (i2, hemi) in enumerate(HEMIS):
                maskFN = os.path.join(parcTypeDir, \
                                      "%s_%s.diff.nii.gz" % (hemi, troi[0]))
                check_file(maskFN, logFN=logFileName)
        
                t_img = nb.load(maskFN)
                t_img_dat = t_img.get_data()

                mask_shapes.append(np.shape(t_img_dat))

                t_img_dat = np.ndarray.flatten(t_img_dat)
                nzIdx[i0].append(np.nonzero(t_img_dat)[0])

                if wmDepth == -1:
                    if troi[2] == 'N':
                        bSpeech.append(0)
                    else:
                        bSpeech.append(1)
                        
                    roiNames.append("%s_%s" % (hemi, troi[0]))

    #=== Check that the dimensions of all mask images match ===#
    if len(np.unique(mask_shapes)) != 1:
        error_log("Non-unique matrix size among the mask files",
                  logFN=logFN)

    #=== Load the dtifit_* files and extract the measures ===#
    nROIs = len(roiNames)
    assert(len(bSpeech) == nROIs)
        
    tensMeas = {}

    mask_shape = np.unique(mask_shapes)

    check_dir(dmriDir, logFN=logFileName)
    for (i0, measName) in enumerate(TENSOR_MEASURES):
        tensMeas[measName] = np.zeros([nROIs, nDepths])

        for (i1, t_depth) in enumerate(wmDepths):
            if t_depth == -1:
                info_log("Extracting tensor measure %s from gray matter" \
                         % measName)
            else:
                info_log("Extracting tensor measure %s from %d-mm deep white matter" % (measName, t_depth))
                
            assert(len(nzIdx[i1]) == nROIs)

            for (i2, troi) in enumerate(roiNames):
                measImg = os.path.join(dmriDir, \
                                       "dtifit_%s.nii.gz" % measName)
                check_file(measImg, logFN=logFileName)

                t_img = nb.load(measImg)
                if not list(mask_shape[0]) == list(np.shape(t_img)):
                    error_log("The diffusion tensor measure volume %s (%s) does not have a dimension that matches those of the mask files" \
                              % (measImg, measName))
                    
                t_img_dat = np.ndarray.flatten(t_img.get_data())

                tensMeas[measName][i2, i1] = \
                                       np.mean(t_img_dat[nzIdx[i1][i2]])

    #=== Write data to file ===#
    from scipy.io import savemat
    res = {"roiNames": roiNames,
           "bSpeech": bSpeech,
           "parcName": parcName,
           "maskShape": mask_shape,
           "wmDepths": wmDepths, 
           "tensMeas": tensMeas}

    savemat(tensMeasMatFN, res)
    check_file(tensMeasMatFN, logFN=logFileName)

    info_log("Tensor measures (%d types) and associated data were saved at: %s"
             % (len(TENSOR_MEASURES), tensMeasMatFN),
             logFN=logFileName)
Exemplo n.º 10
0
def generate_conn_mat(roiList, sc_roiList, 
                      parcTypeDir, parcTracksDir, hemi, 
                      arg_bSpeech, maskType, connFN, logFN=None):    
    import os
    import sys
    import numpy as np
    import nibabel as nb
    from scai_utils import check_file, check_dir, info_log, error_log

    bSC = sc_roiList != None # Subcortical mode flag

    # Process cortical ROIs (this is needed for both SC and C matrix types)
    mask_shapes = []
    roiNames = []
    nzIdx = []
    bSpeech = []
    for (i0, troi) in enumerate(roiList):
        targROI = troi[0]
        maskFN = os.path.join(parcTypeDir, \
                              "%s_%s.diff.nii.gz" % (hemi, targROI))
        check_file(maskFN, logFN=logFN)
        
        t_img = nb.load(maskFN)
        t_img_dat = t_img.get_data()

        mask_shapes.append(np.shape(t_img_dat))
            
        t_img_dat = np.ndarray.flatten(t_img_dat)
            
        nzIdx.append(np.nonzero(t_img_dat)[0])
        roiNames.append(troi[0])
        if troi[2] == 'N':
            bSpeech.append(0)
        else:
            bSpeech.append(1)

    roiNames = np.array(roiNames)
    bSpeech = np.array(bSpeech)
    nzIdx = np.array(nzIdx)
    if arg_bSpeech:
        roiNames = roiNames[np.nonzero(bSpeech)[0]]
        nzIdx = nzIdx[np.nonzero(bSpeech)[0]]

    #print(roiNames) # DEBUG
    #print(bSpeech) # DEBUG

    # Process subcortical ROIs
    if bSC:
        parcSCDir = os.path.join(os.path.split(parcTypeDir)[0], "subcort")
        check_dir(parcSCDir)
        
        sc_roiNames = []
        sc_nzIdx = []
        for (i0, troi) in enumerate(sc_roiList):
            if (hemi == "lh" and troi.startswith("Left-")) or \
               (hemi == "rh" and troi.startswith("Right")):
                sc_roiNames.append(troi)

                maskFN = os.path.join(parcSCDir, \
                                      "%s.diff.nii.gz" % (troi))
                check_file(maskFN, logFN=logFN)
                
                t_img = nb.load(maskFN)
                t_img_dat = t_img.get_data()

                mask_shapes.append(np.shape(t_img_dat))

                t_img_dat = np.ndarray.flatten(t_img_dat)

                sc_nzIdx.append(np.nonzero(t_img_dat)[0])
                #print(sc_nzIdx[-1]) # DEBUG
                #print(maskFN) # DEBUG

        sc_roiNames = np.array(sc_roiNames)
        sc_nzIdx = np.array(sc_nzIdx)
        
        #print(sc_roiNames) # DEBUG
        

    nROIs = len(roiNames)
    assert(len(nzIdx) == nROIs)
    if len(np.unique(mask_shapes)) != 1:
        error_log("Non-unique matrix size among the mask files", logFN=logFN)  
    imgShape = np.unique(mask_shapes)[0]

    if bSC:
        nROIs_sc = len(sc_roiNames)

    #=== Check the completion of seed-only probtrackx ===#
    #===     and calculate the conn matrix ===#
    if not bSC:
        d1_roiNames = roiNames
        d2_roiNames = roiNames
    else:
        d1_roiNames = sc_roiNames
        d2_roiNames = np.array(list(sc_roiNames) + list(roiNames))

    connMat = np.zeros([len(d1_roiNames), len(d2_roiNames)])

    #print(d2_roiNames) # DEBUG
    #print(len(connMat)) # DEBUG
    #print(len(connMat[0])) # DEBUG

    #print(parcTracksDir) # DEBUG

    
    if bSC:
        tmp_dir = os.path.split(parcTracksDir)[1]
        parcTracksSCDir = os.path.split(os.path.split(parcTracksDir)[0])[0]
        parcTracksSCDir = os.path.join(parcTracksSCDir, "tracks_sc", tmp_dir)
        #print(parcTracksSCDir) # DEBUG
        check_dir(parcTracksSCDir)
        
    for (i0, troi) in enumerate(d1_roiNames):
        seedROI = troi
        if not bSC:
            trackResDir = os.path.join(parcTracksDir, 
                                       "%s_%s_%s" % \
                                       (hemi, seedROI, maskType))
        else:
            trackResDir = os.path.join(parcTracksSCDir, seedROI)
                                   
        check_probtrackx_complete(trackResDir, "seedOnly", 
                                  doSeedNorm=True, doSize=True,
                                  logFN=logFN)
        
        fdt_norm = os.path.join(trackResDir, "fdt_paths_norm.nii.gz")
        t_img = nb.load(fdt_norm)
        t_img_dat = t_img.get_data()
            
        assert(list(np.shape(t_img_dat)) == list(imgShape))
        t_img_dat = np.ndarray.flatten(t_img_dat)

        for (i1, troi1) in enumerate(d2_roiNames):
            if not bSC:
                connMat[i0, i1] = np.mean(t_img_dat[nzIdx[i1]])
            else:
                if i1 < nROIs_sc:
                    connMat[i0, i1] = np.mean(t_img_dat[sc_nzIdx[i1]])
                else:
                    connMat[i0, i1] = np.mean(t_img_dat[nzIdx[i1 - nROIs_sc]])

    #=== Make symmetric ===#
    if not bSC:
        connMat = 0.5 * (connMat + connMat.T)

    #print(connMat) ## DEBUG

    #=== Write result .mat file ===#
    from scipy.io import savemat
    if not bSC:
        res = {"roiNames": roiNames,
               "connMat": connMat}
    else:
        res = {"d1_roiNames": d1_roiNames,
               "d2_roiNames": d2_roiNames,
               "connMat": connMat}
        
    savemat(connFN, res)
    print("connFN = " + connFN)
    check_file(connFN, logFN=logFN)
        
    info_log("Connectivity matrix and associated data were saved at: %s" \
             % (connFN),
             logFN=logFN)