def all_cases():
     
     testNames   = ['steady', 'open_base', 'open_counter', 'closed_base', 'closed_counter']
     for o in testNames:
         if o == 'steady':
             scenario = Scenario(ModelTester.test_params).currentPolicy().steady()
         elif o == 'open_base':
             scenario = Scenario(ModelTester.test_params).currentPolicy().open()
         elif o == 'open_counter':
             scenario = Scenario(ModelTester.test_params).open()
         elif o == 'closed_base':
             scenario = Scenario(ModelTester.test_params).currentPolicy().closed()
         elif o == 'closed_counter':
             scenario = Scenario(ModelTester.test_params).closed()
         else:
             scenario = []
         
         if (ModelTester.testOutput( scenario, o, 0 ) != ModelTester.DEVIATION_NONE):
             return
Exemplo n.º 2
0
 def doGELoop():
         
     # Build baseline scenario
     scenario = Scenario(ModelTester.test_params).currentPolicy()
         
     # Get production parameters, remap some parameters -- this is
     # temporary
     paramsProduction = ParamGenerator.production( scenario )
     paramsProduction['capitalShare']   = paramsProduction['alpha']
     paramsProduction['laborShare']     = 1 - paramsProduction['alpha']
         
     Initial          = {'capital0': 10}  
     wage             = 1.5*np.ones(100)
     discountRate     = 0.04*np.ones(100)
     T                = len(wage)
         
         
     # Specify the tolerance level
     tolerance = {}
     tolerance['wage']   = 1e-5
     tolerance['discountRate']   = 1e-5
     excessLabor      = np.ones(100)
     excessShare      = np.ones(100)
         
     # Start the iterative method
     iteration        = 0
     t = time.time()
     while (max(excessLabor[:]) > tolerance['wage'] or max(excessShare[1:T]) > tolerance['discountRate']): 
             
         iteration        = iteration + 1
         Market = {}
         Market['wage']      = wage
         Market['discountRate'] = discountRate
        
         # Initialize firm
         theFirm          = DynamicFirmGE( Initial, Market, paramsProduction )
         laborSupply      = theFirm.getLS()
         laborDemand      = theFirm.getLD()
         excessLabor      = abs(laborSupply - laborDemand)
         shareDemand      = theFirm.getShare()
         excessShare      = abs(shareDemand-1)
         value            = theFirm.getValue()
                  
         # Update guesses
         wage             = (1 / (1 + ((laborSupply - laborDemand) / laborDemand) * 0.1)) * Market['wage']
         for t in range(T-1):
             discountRate[t] = (1 / (1 + ((1 - value[t+1]) / abs(value[t+1])) * 0.1)) * Market['discountRate'][t]
         
         discountRate[T-1] = discountRate[T-2] 
         
     print(time.time() - t)
    def report_baseline_moments():

        outputfilename = os.path.join(PathFinder.getSourceDir(),
                                      'BaselineMoments.txt')
        f = open(outputfilename, 'w+')

        f.write('-------------BASELINE MOMENTS-------------')
        f.write('%s \r\n' % str(datetime.datetime.now()))

        # load the matrix and get inverter function
        (_, f_invert) = ParamGenerator.invert()

        for labelas in np.arange(0.25, 1.0, 0.25):
            for savelas in np.arange(0.25, 1.0, 0.25):
                target = {'labelas': labelas, 'savelas': savelas}
                f.write(
                    '\r\nBASELINE labor elas = %0.2f  savings elas = %0.2f \r\n'
                    % (labelas, savelas))
                inverse = f_invert(target)

                scenario = Scenario({
                    'economy':
                    'steady',
                    'beta':
                    inverse['beta'],
                    'gamma':
                    inverse['gamma'],
                    'sigma':
                    inverse['sigma'],
                    'modelunit_dollar':
                    inverse['modelunit_dollar'],
                    'bequest_phi_1':
                    0
                })

                save_dir = ModelSolver.solve(scenario)

                targets = ModelCalibrator.moment_targets
                targets = np.vstack(
                    (targets, ['labelas', labelas, 'Labor elasticity']))
                targets = np.vstack(
                    (targets, ['savelas', savelas, 'Savings elasticity']))
                outstr = ModelCalibrator.report_moments(save_dir, targets)
                f.write('%s \r\n' % outstr)
                f.write('-------------------------------------\r\n')

        f.write(' ==== DONE ===== \r\n')
        f.close()
    def getScenarios(workListFileName):

        # Get name of worklist from name of file
        workListName = os.path.split(workListFileName)[1]
        workListName = os.path.splitext(workListName)[0]

        # Force read CSV -- readtable gets confused and skips first
        # rows sometimes
        workList = (pd.read_csv(workListFileName,
                                header=None)).to_dict(orient='list')
        numScenarios = len(workList)

        print('DOGEController.getScenarios: Worklist <%s> size = %d \n' %
              (workListName, numScenarios))

        scenarios = np.array([])
        for i in range(numScenarios):
            scenarios.append(Scenario(workList[i]))
        return scenarios
    def calibrate_dollar(gridpoint):

        # Set target = $gdp/adult
        #     from Alex $79.8k for 2016
        #     REM: In moment_targets,
        #        col 1 = varname, col 2 = value, col 3 = description
        target_outperHH_index = np.where(
            ModelCalibrator.moment_targets[:, 0] == 'outperHH')[0]
        target_outperHH = np.array(
            [ModelCalibrator.moment_targets[target_outperHH_index, 1]])

        # Set initial modelunit_dollar.
        # In the future, we could apply a heuristic better initial guess.
        modelunit_dollar = 4.0e-05

        tolerance = 0.01  # as ratio
        err_size = 1
        iter_num = 1
        iter_max = 8  # iterations for modelunit_dollar

        while err_size > tolerance and iter_num <= iter_max:

            # Create Scenario to run
            scenario = Scenario({
                'economy': 'steady',
                'beta': gridpoint.beta,
                'gamma': gridpoint.gamma,
                'sigma': gridpoint.sigma,
                'modelunit_dollar': modelunit_dollar,
                'bequest_phi_1': 0
            })
            save_dir = ModelSolver.solve(scenario)

            # find target -- $gdp/pop
            with open(os.path.join(save_dir, 'paramsTargets.pkl'),
                      'rb') as handle:
                s_paramsTargets = pickle.load(handle)
            run_outperHH = s_paramsTargets['outperHH']

            err_size = abs(run_outperHH / target_outperHH - 1)
            print('...MODELUNIT_DOLLAR iteration %u   error=%f\n ' %
                  (iter_num, err_size))

            # package up answer
            targets = {
                'savelas': s_paramsTargets['savelas'],
                'labelas': s_paramsTargets['labelas'],
                'captoout': s_paramsTargets['captoout'],
                'outperHH': run_outperHH
            }

            # Update by percent shift, reduced a bit as number of
            # iterations increases. This approach slows the update rate
            # in case of slow convergence -- we're usually bouncing around then.
            exp_reduce = max(0.5, 1.0 - iter_num * 0.07)
            modelunit_dollar = modelunit_dollar * (
                (run_outperHH / target_outperHH)**exp_reduce)

            # Find if converged
            #    This only needs to be done after the loop, but
            #    we're about to wipe out the run's files.
            with open(os.path.join(save_dir, 'dynamics.pkl'), 'rb') as handle:
                s_dynamics = pickle.load(handle)
            is_converged = s_dynamics['is_converged']

            # Delete save directory along with parent directories
            shutil.rmtree(os.path.join(save_dir, '..', '..'))

            iter_num = iter_num + 1

        # Keep last successful run with modelunit_dollar
        modelunit_dollar = scenario.modelunit_dollar

        # Check solution condition.
        # Stable solution identified as:
        #  1. Robust solver convergence rate
        #  2. modelunit_dollar convergence
        is_solved = is_converged and (err_size <= tolerance)
        if iter_num > iter_max:
            print('...MODELUNIT_DOLLAR -- max iterations (%u) reached.\n' %
                  iter_max)

        return (targets, modelunit_dollar, is_solved)
Exemplo n.º 6
0
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 15 09:58:42 2019

@author: Azanca
"""

#Run Solver with test parameters

from scenarioModule import Scenario
from modelTesterModule import ModelTester
from modelSolverModule import ModelSolver

t = ModelTester.test_params
s = Scenario(t)

ModelSolver.solve(s)
 def open_counter():
     scenario = Scenario(ModelTester.test_params).open()
     testName = 'open_counter'
     ModelTester.testOutput(scenario, testName, True)   
 def open_base():
     scenario = Scenario(ModelTester.test_params).currentPolicy().open()
     testName = 'open_base'
     ModelTester.testOutput(scenario, testName, True)
 def steady():
     scenario = Scenario(ModelTester.test_params).currentPolicy().steady()
     testName = 'steady'
     ModelTester.testOutput(scenario, testName, True)    
    def jenkinsTests():
        
        try:
            isHPCC      = PathFinder.isHPCCRun()

            # Run just the matching cases for now
            testNames   = ['steady', 'open_base', 'open_counter', 'closed_base', 'closed_counter']
            for o in testNames:
                if o == 'steady':
                    scenario = Scenario(ModelTester.test_params).currentPolicy().steady()
                elif o == 'open_base':
                    scenario = Scenario(ModelTester.test_params).currentPolicy().open()
                elif o == 'open_counter':
                    scenario = Scenario(ModelTester.test_params).open()
                elif o == 'closed_base':
                    scenario = Scenario(ModelTester.test_params).currentPolicy().closed()
                elif o == 'closed_counter':
                    scenario = Scenario(ModelTester.test_params).closed()
                else:
                    scenario = []

                typeDeviation = ModelTester.testOutput( scenario, o, 0 )

                if typeDeviation != ModelTester.DEVIATION_NONE:
                    if typeDeviation == ModelTester.DEVIATION_TINY and isHPCC:
                        continue
                    else:
                        exit(1)

            # Test writing the 'series' interface with the last scenario
            # Requires that 'baseline' scenario exists
            PathFinder.setToTestingMode()
            print( 'TESTING OutputWriter.writeScenarios\n' )
            ModelSolver.solve( scenario.baseline() )
            OutputWriter.writeScenarios( [scenario] )
            PathFinder.setToDevelopmentMode()

            print( 'ALL TESTS PASSED.\n' )
            exit(0)
        except:
            exit(1)
    def unanticipated_shock():
        
        # Make the baseline scenario and "non-shock" version
        t                   = ModelTester.test_params
        
        # baseline scenario is not shocked
        s_baseline          = Scenario(t).currentPolicy().baseline()
        
        # Make "non-shock" shock baseline
        t                   = s_baseline.getParams()
        t.PolicyShockYear   = t.TransitionFirstYear + ModelTester.policyShockShift
        s_next              = Scenario(t)

        # Get baseline Market, Dynamic
        ModelSolver.removeCached(s_baseline)                 # Clear cached Scenario
        
        tagged_dir      = ModelSolver.solve(s_baseline)
        baseline_dir    = PathFinder.getCacheDir(s_baseline)
        with open(os.path.join(baseline_dir, 'market.pkl'), 'rb') as handle:
            baseMarket      = pickle.load(handle)
        with open(os.path.join(baseline_dir, 'dynamics.pkl'), 'rb') as handle:
            baseDynamic     = pickle.load(handle)   
        
        # Get shocked Market, Dynamic
        ModelSolver.removeCached(s_next)                     # Clear cached scenario
        
        tagged_dir      = ModelSolver.solve(s_next)
        x_dir           = PathFinder.getCacheDir(s_next)
        with open(os.path.join(x_dir, 'market.pkl'), 'rb') as handle:
            xMarket         = pickle.load(handle)
        with open(os.path.join(x_dir, 'dynamics.pkl'), 'rb') as handle:
            xDynamic        = pickle.load(handle)
        
        # Compare baseline and shocked path
        print( '\n' )
        
        def do_check (baseD, xD, dName):
            passed = 1
            for p in baseD.keys():
                valuename = p
                if (not isinstance(baseD[valuename], numbers.Number) or ('_next' in valuename)):
                    continue

                # Check for within percent tolerance, also check 
                #    within numerical deviation (this is in case div by
                #    zero or close to zero)
                # TBD: Standardize deviations and tolerances
                percentDeviation    = abs((xD[valuename] - baseD[valuename]) / baseD[valuename])
                absoluteDeviation   = abs(baseD[valuename] - xD[valuename])
                if not np.all(np.array(percentDeviation) < 1e-4):
                    if not np.all(np.array(absoluteDeviation) < 1e-13):
                        m1 = print( 'Max percentdev = %f' % max(percentDeviation) )
                        m2 = print( 'Max abs dev = %0.14f' % max(absoluteDeviation) )
                        print( '%s.%s outside tolerance;\t\t %s; %s \n' % (dName, valuename, m1, m2))
                        passed = 0
                
            return passed
        
        passed = do_check( baseMarket , xMarket , 'Market'  )
        passed = do_check( baseDynamic, xDynamic, 'Dynamic' )
        if passed:
            print( 'All values within convergence tolerances.\n' )
        
        return passed
 def closed_counter():
     scenario = Scenario(ModelTester.test_params).closed()
     testName = 'closed_counter'
     ModelTester.testOutput( scenario, testName, True )
 def closed_base():
     scenario = Scenario(ModelTester.test_params).currentPolicy().closed()
     testName = 'closed_base'
     ModelTester.testOutput(scenario, testName, True)
Exemplo n.º 14
0
#Test ParamGenerator.labinc_discretization
from modelTesterModule import ModelTester
from scenarioModule import Scenario
from pathFinderModule import PathFinder
from paramGeneratorModule import ParamGenerator
from inputReaderModule import InputReader
from socialSecurityModule import SocialSecurity
from initialGuessModule import InitialGuess

import pandas as pd
import numpy as np
import os
import pickle

t = ModelTester.test_params
scenario = Scenario(t)

scenario = scenario.currentPolicy().steady()

s = ParamGenerator.labinc_discretization(scenario)
'''
#Test ParamGenerator.social_security
from modelTesterModule import ModelTester
from scenarioModule import Scenario
from pathFinderModule import PathFinder
from paramGeneratorModule import ParamGenerator
from inputReaderModule import InputReader
from socialSecurityModule import SocialSecurity
from initialGuessModule import InitialGuess

import pandas as pd