def metric_calibration_status(y_true, y_pred): """ Metric for the `calibration_status`. :param y_true: Reference calibration_status. :type y_true: list :param y_pred: Predicted calibration_status. :type y_pred: list :return: Error. :rtype: list """ return [v[0] for v in y_pred] #: Metrics to compare outputs with targets. metrics = sh.map_list(targets, mae, metric_calibration_status) #: Upper score limits to raise the warnings. up_limit = {'identified_co2_emissions': 0.5} #: Prediction model. # noinspection PyProtectedMember dsp = sh.Blueprint( copy.deepcopy(_fc).add_data('kco2_wltp_correction_factor'), inputs, outputs, models)._set_cls(define_sub_model)
eng = calculate_gear_box_speeds_in(gears, vel, vsr, sv) return calculate_error_coefficients(t_gears, gears, t_eng, eng, vel, sv) def _sort(v): e = sh.selector(t_e, v[0], output_type='list') return (e[0], -e[1], -e[2]), v[1] # Sort by error. rank = sorted( ((_err(k, m), k, m) for k, m in sorted(sh.selector(at_m, data, allow_miss=True).items())), key=_sort) if rank: data['at_scores'] = collections.OrderedDict((k, e) for e, k, m in rank) e, k, m = rank[0] mdl[sgs], mdl[k] = k, m log.debug( 'at_gear_shifting_model: %s with mean_absolute_error %.3f ' '[RPM], accuracy_score %.3f, and correlation_coefficient ' '%.3f.', k, *sh.selector(t_e, e, output_type='list')) return mdl #: Prediction model. # noinspection PyProtectedMember dsp = sh.Blueprint(_at_gear, inputs, outputs, models)._set_cls(define_sub_model)
#: Upper score limits to raise the warnings. up_limit = sh.map_list(targets, 40) def select_models(keys, data): """ Select models from data. :param keys: Model keys. :type keys: list :param data: Cycle data. :type data: dict :return: Models. :rtype: dict """ mdl = sh.selector(keys, data, allow_miss=True) if 'tyre_dynamic_rolling_coefficient' in mdl: mdl.pop('r_dynamic', None) return mdl #: Prediction model. # noinspection PyProtectedMember dsp = sh.Blueprint(_physical, inputs, outputs, models)._set_cls(define_sub_model)
#: Inputs required to run the model. inputs = [ 'drive_battery_electric_powers', 'times', 'motive_powers', 'accelerations', 'on_engine', 'starter_currents', 'initial_service_battery_state_of_charge' ] #: Relevant outputs of the model. outputs = [ 'alternator_currents', 'service_battery_currents', 'drive_battery_currents', 'dcdc_converter_currents', 'service_battery_state_of_charges', 'drive_battery_state_of_charges' ] #: Targets to compare the outputs of the model. targets = outputs #: Weights coefficients to compute the model score. weights = sh.map_list(targets, 1, 1, 1, 1, 0, 0) #: Metrics to compare outputs with targets. metrics = sh.map_list(targets, *([co2_utl.mae] * 6)) #: Upper score limits to raise the warnings. up_limit = dict.fromkeys(('alternator_currents', 'service_battery_currents', 'drive_battery_currents', 'dcdc_converter_currents'), 60) #: Prediction model. # noinspection PyProtectedMember dsp = sh.Blueprint(_electrics, inputs, outputs, models)._set_cls(define_sub_model)
ext=('.dill', ))) dsp.add_function(function=parse_excel_file, inputs=['input_file_name', 'input_file'], outputs=['raw_data'], input_domain=check_file_format) if _dice is not None: _out, _inp = ['base', 'meta', 'dice'], [ 'input_file_name', 'input_file', 'encryption_keys', 'encryption_keys_passwords' ] # noinspection PyProtectedMember dsp.add_function(function=sh.Blueprint( sh.SubDispatchFunction(_dice, function_id='load_ta_file', inputs=_inp[1:], outputs=_out))._set_cls(sh.add_args), description='Load inputs from .co2mpas.ta file.', inputs=_inp, outputs=['raw_data'], filters=[functools.partial(sh.map_list, [_out])], input_domain=functools.partial(check_file_format, ext=('.co2mpas.ta', ))) _out, _inp = ['data', 'dice'], ['input_file_name', 'input_file'] # noinspection PyProtectedMember dsp.add_function(function=sh.Blueprint( sh.SubDispatchFunction(_dice, inputs=_inp[1:], outputs=_out))._set_cls(sh.add_args), function_id='load_co2mpas_file',
:param y_pred: Predicted engine speed vector [RPM]. :type y_pred: numpy.array :param after_treatment_warm_up_phases: Phases when engine speed is affected by the after treatment warm up [-]. :type after_treatment_warm_up_phases: numpy.array :return: Error. :rtype: float """ b = after_treatment_warm_up_phases if b.any(): from co2mpas.utils import mae return float(mae(y_true[b], y_pred[b])) else: return 0 #: Metrics to compare outputs with targets. metrics = sh.map_list(targets, metric_after_treatment_speed_model) #: Upper score limits to raise the warnings. up_limit = sh.map_list(targets, 160) #: Prediction model. # noinspection PyProtectedMember dsp = sh.Blueprint(_after_treat, inputs, outputs, models)._set_cls(define_sub_model)
'timestamp' ], outputs=['output_file_name'], input_domain=check_first_arg_false) if _dice is not None: dsp.add_data('co2mpas_version', __version__) _out, _inp = ['output_file_name', 'output_file'], [ 'excel_input', 'base', 'start_time', 'excel_output', 'output_folder', 'report', 'encryption_keys', 'meta', 'sign_key', 'dice', 'timestamp', 'co2mpas_version' ] # noinspection PyProtectedMember,PyTypeChecker dsp.add_function(function=sh.Blueprint( sh.SubDispatchFunction(_dice, inputs=_inp, outputs=_out))._set_cls(sh.add_args), function_id='write_ta_output', description='Write ta output file.', inputs=['type_approval_mode', 'input_file'] + _inp[1:], outputs=_out, input_domain=check_first_arg) else: dsp.add_data('base', description='Base data.') dsp.add_data('excel_input', description='Excel input file.') dsp.add_data('encryption_keys', description='Encryption keys for TA mode.') dsp.add_data('meta', description='Meta data.') dsp.add_data('sign_key', description='User signature key for TA mode.') @sh.add_function(dsp)