Exemplo n.º 1
0
    def setUp(self):
        """Consider the Fermi-Pasta-Ulam problem and Kuramoto model for testing the routines in sle.py"""

        # set tolerance
        self.tol = 1e-5

        # number of oscillators
        self.fpu_d = 3
        self.kuramoto_d = 10

        # parameters for the Fermi-Pasta_ulam problem
        self.fpu_m = 2000
        self.fpu_psi = [lambda t: 1, lambda t: t, lambda t: t ** 2, lambda t: t ** 3]

        # parameters for the Kuramoto model
        self.kuramoto_x_0 = 2 * np.pi * np.random.rand(self.kuramoto_d) - np.pi
        self.kuramoto_w = np.linspace(-5, 5, self.kuramoto_d)
        self.kuramoto_t = 100
        self.kuramoto_m = 1000
        self.kuramoto_psi = [lambda t: np.sin(t), lambda t: np.cos(t)]

        # exact coefficient tensors
        self.fpu_xi_exact = mdl.fpu_coefficients(self.fpu_d)
        self.kuramoto_xi_exact = mdl.kuramoto_coefficients(self.kuramoto_d, self.kuramoto_w)

        # generate test data
        [self.fpu_x, self.fpu_y] = mdl.fermi_pasta_ulam(self.fpu_d, self.fpu_m)
        [self.kuramoto_x, self.kuramoto_y] = mdl.kuramoto(self.kuramoto_x_0, self.kuramoto_w, self.kuramoto_t,
                                                          self.kuramoto_m)
Exemplo n.º 2
0
    def test_fpu_kuramoto(self):
        """tests for Fermi-Pasta-Ulam and Kuramoto model"""

        mdl.fpu_coefficients(self.order)
        mdl.kuramoto_coefficients(self.order, self.frequencies)
Exemplo n.º 3
0
# define arrays for CPU times and relative errors
rel_errors = np.zeros([
    int((snapshots_max - snapshots_min) / snapshots_step) + 1,
    int(d_max - d_min) + 1
])

# compare CPU times of tensor-based and matrix-based approaches
for i in range(d_min, d_max + 1):

    print('Number of osciallators: ' + str(i))
    print('-' * (24 + len(str(i))) + '\n')

    # construct exact solution in TT and matrix format
    start_time = utl.progress('Construct exact solution in TT format', 0)
    xi_exact = mdl.fpu_coefficients(i)
    utl.progress('Construct exact solution in TT format',
                 100,
                 cpu_time=_time.time() - start_time)

    # generate data
    start_time = utl.progress('Generate test data', 0)
    [x, y] = fermi_pasta_ulam(i, snapshots_max)
    utl.progress('Generate test data', 100, cpu_time=_time.time() - start_time)

    start_time = utl.progress('Running MANDy', 0)
    for j in range(snapshots_min, snapshots_max + snapshots_step,
                   snapshots_step):
        # storing indices
        ind_1 = rel_errors.shape[0] - 1 - int(
            (j - snapshots_min) / snapshots_step)
Exemplo n.º 4
0
    def setUp(self):
        """Consider the Fermi-Pasta-Ulam problem and Kuramoto model for testing the routines in sle.py"""

        # set tolerance
        self.tol = 1e-5

        # number of oscillators
        self.fpu_d = 4
        self.kuramoto_d = 10

        # parameters for the Fermi-Pasta_ulam problem
        self.fpu_m = 2000
        self.fpu_psi = [
            lambda t: 1, lambda t: t, lambda t: t**2, lambda t: t**3
        ]

        # parameters for the Kuramoto model
        self.kuramoto_x_0 = 2 * np.pi * np.random.rand(self.kuramoto_d) - np.pi
        self.kuramoto_w = np.linspace(-5, 5, self.kuramoto_d)
        self.kuramoto_t = 100
        self.kuramoto_m = 1000
        self.kuramoto_psi = [lambda t: np.sin(t), lambda t: np.cos(t)]
        self.kuramoto_basis = [[tdt.constant_function()] +
                               [tdt.sin(i, 1) for i in range(self.kuramoto_d)],
                               [tdt.constant_function()] +
                               [tdt.cos(i, 1) for i in range(self.kuramoto_d)]]
        self.kuramoto_initial = tt.ones([11, 11], [1, 1], 11)

        # exact coefficient tensors
        self.fpu_xi_exact = mdl.fpu_coefficients(self.fpu_d)
        self.kuramoto_xi_exact = mdl.kuramoto_coefficients(
            self.kuramoto_d, self.kuramoto_w)

        # generate test data for FPU
        self.fpu_x = 0.2 * np.random.rand(self.fpu_d, self.fpu_m) - 0.1
        self.fpu_y = np.zeros((self.fpu_d, self.fpu_m))
        for j in range(self.fpu_m):
            self.fpu_y[0,
                       j] = self.fpu_x[1, j] - 2 * self.fpu_x[0, j] + 0.7 * (
                           (self.fpu_x[1, j] - self.fpu_x[0, j])**3 -
                           self.fpu_x[0, j]**3)
            for i in range(1, self.fpu_d - 1):
                self.fpu_y[i, j] = self.fpu_x[
                    i + 1,
                    j] - 2 * self.fpu_x[i, j] + self.fpu_x[i - 1, j] + 0.7 * (
                        (self.fpu_x[i + 1, j] - self.fpu_x[i, j])**3 -
                        (self.fpu_x[i, j] - self.fpu_x[i - 1, j])**3)
                self.fpu_y[-1, j] = -2 * self.fpu_x[-1, j] + self.fpu_x[
                    -2, j] + 0.7 * (-self.fpu_x[-1, j]**3 -
                                    (self.fpu_x[-1, j] - self.fpu_x[-2, j])**3)

        # generate test data for Kuramoto
        number_of_oscillators = len(self.kuramoto_x_0)

        def kuramoto_ode(_, theta):
            [theta_i, theta_j] = np.meshgrid(theta, theta)
            return self.kuramoto_w + 2 / number_of_oscillators * np.sin(
                theta_j - theta_i).sum(0) + 0.2 * np.sin(theta)

        sol = spint.solve_ivp(kuramoto_ode, [0, self.kuramoto_t],
                              self.kuramoto_x_0,
                              method='BDF',
                              t_eval=np.linspace(0, self.kuramoto_t,
                                                 self.kuramoto_m))
        self.kuramoto_x = sol.y
        self.kuramoto_y = np.zeros([number_of_oscillators, self.kuramoto_m])
        for i in range(self.kuramoto_m):
            self.kuramoto_y[:, i] = kuramoto_ode(0, self.kuramoto_x[:, i])
Exemplo n.º 5
0
import scipy.linalg as splin
import scikit_tt.data_driven.mandy as mandy
import scikit_tt.models as mdl
import scikit_tt.utils as utl
import matplotlib.pyplot as plt

utl.header(title='MANDy - Fermi-Pasta-Ulam problem', subtitle='Example 1')

# model parameters
number_of_oscillators = 10
psi = [lambda t: 1, lambda t: t, lambda t: t**2, lambda t: t**3]
p = len(psi)

# construct exact solution in TT and matrix format
utl.progress('Construct exact solution in TT format', 0, dots=7)
xi_exact = mdl.fpu_coefficients(number_of_oscillators)
utl.progress('Construct exact solution in TT format', 100, dots=7)
utl.progress('Construct exact solution in matrix format', 0)
xi_exact_mat = xi_exact.full().reshape(
    [p**number_of_oscillators, number_of_oscillators])
utl.progress('Construct exact solution in matrix format', 100)

# snapshot parameters
snapshots_min = 1000
snapshots_max = 6000
snapshots_step = 500

# maximum number of snapshots for matrix approach
snapshots_mat = 5000

# define arrays for CPU times and relative errors