X_test = np.dot(base_X_test, coloring_matrix)

###############################################################################
# Compute Ledoit-Wolf and Covariances on a grid of shrinkages

from scikits.learn.covariance import LedoitWolf, OAS, ShrunkCovariance, \
    log_likelihood, empirical_covariance

# Ledoit-Wolf optimal shrinkage coefficient estimate
lw = LedoitWolf()
loglik_lw = lw.fit(X_train, assume_centered=True).score(
    X_test, assume_centered=True)

# OAS coefficient estimate
oa = OAS()
loglik_oa = oa.fit(X_train, assume_centered=True).score(
    X_test, assume_centered=True)

# spanning a range of possible shrinkage coefficient values
shrinkages = np.logspace(-3, 0, 30)
negative_logliks = [-ShrunkCovariance(shrinkage=s).fit(
        X_train, assume_centered=True).score(X_test, assume_centered=True) \
                         for s in shrinkages]

# getting the likelihood under the real model
real_cov = np.dot(coloring_matrix.T, coloring_matrix)
emp_cov = empirical_covariance(X_train)
loglik_real = -log_likelihood(emp_cov, linalg.inv(real_cov))

###############################################################################
# Plot results
pl.figure(-1)
Exemplo n.º 2
0
lw_mse = np.zeros((n_samples_range.size, repeat))
oa_mse = np.zeros((n_samples_range.size, repeat))
lw_shrinkage = np.zeros((n_samples_range.size, repeat))
oa_shrinkage = np.zeros((n_samples_range.size, repeat))
for i, n_samples in enumerate(n_samples_range):
    for j in range(repeat):
        X = np.dot(np.random.normal(size=(n_samples, n_features)),
                   coloring_matrix.T)

        lw = LedoitWolf(store_precision=False)
        lw.fit(X, assume_centered=True)
        lw_mse[i, j] = lw.error_norm(real_cov, scaling=False)
        lw_shrinkage[i, j] = lw.shrinkage_

        oa = OAS(store_precision=False)
        oa.fit(X, assume_centered=True)
        oa_mse[i, j] = oa.error_norm(real_cov, scaling=False)
        oa_shrinkage[i, j] = oa.shrinkage_

# plot MSE
pl.subplot(2, 1, 1)
pl.errorbar(n_samples_range,
            lw_mse.mean(1),
            yerr=lw_mse.std(1),
            label='Ledoit-Wolf',
            color='g')
pl.errorbar(n_samples_range,
            oa_mse.mean(1),
            yerr=oa_mse.std(1),
            label='OAS',
            color='r')
X_test = np.dot(base_X_test, coloring_matrix)

###############################################################################
# Compute Ledoit-Wolf and Covariances on a grid of shrinkages

from scikits.learn.covariance import LedoitWolf, OAS, ShrunkCovariance, \
    log_likelihood, empirical_covariance

# Ledoit-Wolf optimal shrinkage coefficient estimate
lw = LedoitWolf()
loglik_lw = lw.fit(X_train, assume_centered=True).score(X_test,
                                                        assume_centered=True)

# OAS coefficient estimate
oa = OAS()
loglik_oa = oa.fit(X_train, assume_centered=True).score(X_test,
                                                        assume_centered=True)

# spanning a range of possible shrinkage coefficient values
shrinkages = np.logspace(-3, 0, 30)
negative_logliks = [-ShrunkCovariance(shrinkage=s).fit(
        X_train, assume_centered=True).score(X_test, assume_centered=True) \
                         for s in shrinkages]

# getting the likelihood under the real model
real_cov = np.dot(coloring_matrix.T, coloring_matrix)
emp_cov = empirical_covariance(X_train)
loglik_real = -log_likelihood(emp_cov, linalg.inv(real_cov))

###############################################################################
# Plot results
pl.figure(-1)
Exemplo n.º 4
0
lw_mse = np.zeros((n_samples_range.size, repeat))
oa_mse = np.zeros((n_samples_range.size, repeat))
lw_shrinkage = np.zeros((n_samples_range.size, repeat))
oa_shrinkage = np.zeros((n_samples_range.size, repeat))
for i, n_samples in enumerate(n_samples_range):
    for j in range(repeat):
        X = np.dot(
            np.random.normal(size=(n_samples, n_features)), coloring_matrix.T)

        lw = LedoitWolf(store_precision=False)
        lw.fit(X, assume_centered=True)
        lw_mse[i,j] = lw.mse(real_cov)
        lw_shrinkage[i,j] = lw.shrinkage_

        oa = OAS(store_precision=False)
        oa.fit(X, assume_centered=True)
        oa_mse[i,j] = oa.mse(real_cov)
        oa_shrinkage[i,j] = oa.shrinkage_

# plot MSE
pl.subplot(2,1,1)
pl.errorbar(n_samples_range, lw_mse.mean(1), yerr=lw_mse.std(1),
            label='Ledoit-Wolf', color='g')
pl.errorbar(n_samples_range, oa_mse.mean(1), yerr=oa_mse.std(1),
            label='OAS', color='r')
pl.ylabel("MSE")
pl.legend(loc="upper right")
pl.title("Comparison of covariance estimators")
pl.xlim(5, 31)

# plot shrinkage coefficient