def __init__(self):
     from scikits.statsmodels.datasets.sunspots import load
     self.data = load()
     self.rho, self.sigma = yule_walker(self.data.endog, order=4,
             method="mle")
     self.R_params = [1.2831003105694765, -0.45240924374091945,
             -0.20770298557575195, 0.047943648089542337]
Exemplo n.º 2
0
if __name__ == '__main__':
    nobs = 50
    ar = [1.0, -0.8, 0.1]
    ma = [1.0, 0.1, 0.2]
    #ma = [1]
    np.random.seed(9875789)
    y = arma_generate_sample(ar, ma, nobs, 2)
    y -= y.mean()  #I haven't checked treatment of mean yet, so remove
    mod = MLEGLS(y)
    mod.nar, mod.nma = 2, 2  #needs to be added, no init method
    mod.nobs = len(y)
    res = mod.fit(start_params=[0.1, -0.8, 0.2, 0.1, 1.])
    print 'DGP', ar, ma
    print res.params
    from scikits.statsmodels.regression import yule_walker
    print yule_walker(y, 2)
    #resi = mod.fit_invertible(start_params=[0.1,0,0.2,0, 0.5])
    #print resi.params

    arpoly, mapoly = getpoly(mod, res.params[:-1])

    data = sm.datasets.sunspots.load()
    #ys = data.endog[-100:]
    ##    ys = data.endog[12:]-data.endog[:-12]
    ##    ys -= ys.mean()
    ##    mods = MLEGLS(ys)
    ##    mods.nar, mods.nma = 13, 1   #needs to be added, no init method
    ##    mods.nobs = len(ys)
    ##    ress = mods.fit(start_params=np.r_[0.4, np.zeros(12), [0.2, 5.]],maxiter=200)
    ##    print ress.params
    ##    #from scikits.statsmodels.sandbox.tsa import arima as tsaa
Exemplo n.º 3
0
if __name__ == '__main__':
    nobs = 50
    ar = [1.0, -0.8, 0.1]
    ma = [1.0,  0.1,  0.2]
    #ma = [1]
    np.random.seed(9875789)
    y = arma_generate_sample(ar,ma,nobs,2)
    y -= y.mean() #I haven't checked treatment of mean yet, so remove
    mod = MLEGLS(y)
    mod.nar, mod.nma = 2, 2   #needs to be added, no init method
    mod.nobs = len(y)
    res = mod.fit(start_params=[0.1, -0.8, 0.2, 0.1, 1.])
    print 'DGP', ar, ma
    print res.params
    from scikits.statsmodels.regression import yule_walker
    print yule_walker(y, 2)
    #resi = mod.fit_invertible(start_params=[0.1,0,0.2,0, 0.5])
    #print resi.params

    arpoly, mapoly = getpoly(mod, res.params[:-1])

    data = sm.datasets.sunspots.load()
    #ys = data.endog[-100:]
##    ys = data.endog[12:]-data.endog[:-12]
##    ys -= ys.mean()
##    mods = MLEGLS(ys)
##    mods.nar, mods.nma = 13, 1   #needs to be added, no init method
##    mods.nobs = len(ys)
##    ress = mods.fit(start_params=np.r_[0.4, np.zeros(12), [0.2, 5.]],maxiter=200)
##    print ress.params
##    #from scikits.statsmodels.sandbox.tsa import arima as tsaa
examples_all = range(10) + ["test_copy"]

examples = examples_all  # [5]

if 0 in examples:
    print "\n Example 0"
    X = np.arange(1, 8)
    X = sm.add_constant(X)
    Y = np.array((1, 3, 4, 5, 8, 10, 9))
    rho = 2
    model = GLSAR(Y, X, 2)
    for i in range(6):
        results = model.fit()
        print "AR coefficients:", model.rho
        rho, sigma = yule_walker(results.resid, order=model.order)
        model = GLSAR(Y, X, rho)

    par0 = results.params
    print par0
    model0if = GLSAR(Y, X, 2)
    res = model0if.iterative_fit(6)
    print "iterativefit beta", res.params
    results.t()  # is this correct? it does equal params/bse
    # but isn't the same as the AR example (which was wrong in the first place..)
    print results.t_test([0, 1])  # are sd and t correct? vs
    print results.f_test(np.eye(2))


rhotrue = [0.5, 0.2]
rhotrue = np.asarray(rhotrue)